
Assignment 2 of MATP6960: programming

(Due at 11:59PM on Oct-28-2022)

Instruction: Each student needs to submit the source code file and a report by Latex. You

will be evaluated based on whether you have all the results in the requirements

below, and also the report. Compress your source files (DO NOT send the data.) and

PDF report file into a single .zip file, name it as “MATP6960 Assignment2 YourLastNameInitial”,

and send it to optimization.rpi@gmail.com

Problem description

In the class, we introduced the error-compensated stochastic gradient method; see the class

note for the updates or page 49 of the survey paper [1]. In this project assignment, you are

required to implement this method to train a neural network. Let fθ denote a neural network

parameterized by θ. Then the training process will be to solve the following problem

min
θ

1

N

N∑
i=1

`(fθ(xi),yi), (1)

where ` is a loss function such as the logarithmic softmax function in the provided code.

Requirements

Read the provided code FashionMNIST.py, which is modified based on the code for the first

assignment. Again, you can use PyTorch to compute stochastic gradient but CANNOT

use optimizer.step(). You are required to implement the error-compensated stochastic

gradient method on a single machine. So this is a simulation but NOT real distributed

computing. The following code creates data loaders, each of which will load the sampled

data in a single class. The function get_indices has been provided. You can also write

your own code to split the data set into subsets according to the labels. You can refer to

any resource, including published papers/books and released code in GitHub, and you must

give the reference in your report.

1



#############################################################

local_Xtrain = []

local_ytrain = []

for i in range(10):

idx = get_indices(dataset_train, i)

local_Xtrain.append(Xtrain[idx,])

local_ytrain.append(ytrain[idx,])

#############################################################

You are required to do the follows.

1. Write a compress operator. This operator can be a quantization operator as we defined

in class, or you can refer to Eqn. (3.1) in [1]. The compress operator can also be

a sparsification operator, which picks a few largest elements (in magnitude) of the

argument vector. Specifically, if you define a top-s sparsification operator Qs, then for

any given vector v, u = Qs(v) is the vector such that for each i,

ui = vi, if vi is one of the largest s elements of v, and otherwise ui = 0.

2. Complete the training part in the main function in the provided code, or write

your own train function by implementing the error-compensated stochastic gradi-

ent method. In the provided code, the batch size is set to 5 for each class of data,

so for every update, the actual batch size would be 50, because each update uses an

aggregated gradient. You can tune the batch size.

3. Pick either the fully-connected network or the LeNet, or you can define another ar-

chitecture. Test your train function by using your defined compress operator and

running the method to at least 50 epochs or until you see no progress based on the

testing accuracy. If you use a b-bit quantization operator, you are required to try dif-

ferent values of b, say b = 4, 8, 16, 32. If you use a top-s sparsification operator, you

also need to try different values of s, for example s = 0.1n, 0.2n, 0.5n, where n is the

dimension of the model parameter. Report the results for different values of b or s.

You may need to use different learning rates for different b or s.

4. Discuss what you observe in the test. For example, how you tune the algorithm pa-

rameters, how the values of b or s affect the prediction accuracy of the algorithm, how

the batch size affects the stability of the algorithm. If you use a big b or s, say, b = 32,

or s = 0.8n, the testing accuracy should be near 88%, just as that by a non-compressed

method.

2



Bonus (up to 20% bonus credit)

If you use both quantization and sparsification operators, you will earn up to 20% bonus

credit.

References

[1] J. Liu, C. Zhang, et al. Distributed learning systems with first-order methods. Founda-

tions and Trends® in Databases, 9(1):1–100, 2020.

3


