
Applications of block coordinate update method

nonnegative matrix factorization and robust PCA

(Due in class April-6-2018)

1 Nonnegative matrix factorization

The nonnegative matrix factorization (NMF) aims to find two nonnegative matrices W ∈
Rm×r and H ∈ Rn×r such that their product WH> approximates a given nonnegative matrix

X ∈ Rm×n. Under the assumption of Gaussian noise, it can be modeled as

minimize
W,H

1

2
‖WH> −X‖2F + φ1(W ) + φ2(H), s.t. W ∈ Rm×r

+ , H ∈ Rn×r
+ , (1)

where φ1 and φ2 are regularization terms to encourage certain structures of the solution.

Because of nonnegativity, NMF can learn local features and has better interpretability than

the principle component analysis (PCA), which often learns global features.

2 Robust principal component analysis

Let X be composed of a sparse matrix S and a low-rank matrix L. The robust PCA aims at

finding S and L, given X. Using `1 norm to promote sparsity and nuclear norm to promote

low-rankness, robust PCA can be modeled as

min
L,S
‖L‖∗ + λ‖S‖1, s.t. L+ S = X. (2)

Here, ‖L‖∗ denotes the nuclear norm of L and equals the summation of its singular values,

and ‖S‖1 =
∑

i,j |sij|. Directly applying alternating minimization (AltMin) to (2) will not

work because fixing either L or S, the other one is fully determined from the constraint. To

use AltMin, one can solve the penalized problem

min
L,S
‖L‖∗ + λ‖S‖1 +

β

2
‖L+ S −X‖2F , (3)

or a sequence of the above problem, where β > 0 is the penalty parameter.
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3 Requirements

Include every item below in a single report and attach your code. Use the provided datasets

to test your code.

1. Let W be the set consisting all matrices W such that ‖Wj‖2 ≤ 1 for j = 1, . . . , r,

where Wj is the j-th column of W . Let φ1(W ) be the indicator function of W and

φ2(H) = 0. Then the problem (1) is equivalent to

minimize
W,H

1

2
‖WH> −X‖2F , s.t. W ∈ Rm×r

+ , H ∈ Rn×r
+ , ‖Wj‖2 ≤ 1, j = 1, . . . , r. (4)

Develop three solvers for (4): one is by the projected gradient, another is by the

alternating minimization, and the third one by the alternating proximal gradient. For

the alternating minimization, you will need to write a subroutine, which could be

accelerated proximal gradient or a certain existing solver.

2. Compare the three solvers by using the provided Swimmer dataset. Note that the

dataset is in 3D format. It contains 256 images of size 32 × 32. You will need first

reshape each image into a column vector and form a 1024×256 matrix X. Report how

these solvers decrease the objective values in terms of iteration number of also actual

running time. For alternating minimization and alternating proximal gradient method,

one iteration is counted as updating both W and H once. Set r = 17. Reshape each

column of W into a 32×32 image and use imshow to show all the columns of W . Report

what you observe. [Hint: columns of W should contain local parts of the images, such

as limbs in different positions.]

3. Develop two solvers for (2): one is by the proximal gradient, and another is by the

alternating minimization.

4. Compare the two solvers by using the provided Escalator video Dataset. Note that the

dataset is in 3D format. It contains 200 frames of size 130 × 160. You will need first

reshape each frame into a column vector and form a 20800 × 200 matrix X. Report

how these solvers decrease the objective values in terms of iteration number of also

actual running time. Reshape each column of L and S into a 130 × 160 image and

use imshow to show a few selected columns of L and S. You can also use implay to

see how the foreground and background of the video are separated. Report what you

observe.
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