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Motivations

® data too big to fit on a single machine (e.g., ImageNet about 150 GB)
® data collected by different agents (e.g., medical data, financial data)
® accessibility to high-performance computing resources

® slow convergence of certain reliable methods
Goals

® design new algorithms for distributed optimization

® fast convergence and high parallelization speed-up
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Outline

1. Problem formulation and examples

2. Proposed algorithm and convergence rate results

3. Numerical results for phase retrieval and machine learning
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Stochastic problem formulation

6" = min $(x) == F(x) +r(x), with F(x) = E¢[f(x;€)]

xERM

x decision variable (e.g., parameters of a neural network)

& a random variable that can represent a stochastic scenario or a data
point

reduces to the finite-sum problem when & ~ {&1,...,¢én}.

F' is nonconvex and can be smooth or nonsmooth (better results can be
claimed if F' is smooth)

r is a regularization term (e.g., sparsity-promoting term in sparse neural
network training [Scardapane et. al'17])
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Example I: phase retrieval

To recover phase from a set of measured magnitude
min £ 37 14O — b
x m T 1
=1

® x represents the underlying signal /image

® A; the i-th measuring operation

® b; the i-th measured magnitude

Remark: the objective is nonconvex nonsmooth

Picture from https://aimi.stanford.edu/radiopaedia-list-ai-imaging-datasets
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https://aimi.stanford.edu/radiopaedia-list-ai-imaging-datasets

Example 1l: sparse deep learning [Scardapane et al’'17]

Sparsity-regularized deep learning model

m

1
mgn o Z 0(0;x,y:) +11(0) +72,1(0)

i=1
® @: neural network parameters

® (x;,y;): training data point with label y;

® r1: £1-norm sparsity term

® 75.1: group sparsity term (to remove all connections from one neuron)

Benefits: mitigating over-fitting, generating lighter model (that can reduce
inference time and save storage)
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Centralized computing architecture

server

® data distributed over working agents (or workers)

® model updated on server (or master)
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parallel stochastic proximal subgradient method

Update by the parallel stochastic proximal subgradient method:

xFFD — prox,, . (x(k) -k Z?:l @f(x(k);gk,j»

® p: the number of workers
e Vf denotes the subgradient
® {k,;: the sample on j-th worker at the k-th update (can be a minibatch of
samples)
Limitations:

1. All workers are synchronized; this can cause waiting time and lead to low

parallelization speed-up

2. Slow convergence

We address the limitations by asynchronous computing and acceleration
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Proposed Algorithm

1. Initialize x® € dom(r) and set
< — 5O
2. lterate for k =1,2,...
- Let g = V(x5 )
computed by a worker;
— Choose aj > 0 and B > 0;
— Update the variable x by

x*HD — prox,, . (x(k) — akg<k) + Bk(x<k) — X(k71>)) .

Remark
® update performed by master
® inertial term By (x®) — x(*=1)) for acceleration
® £ is a sample of £
® 7, > 0 measures the possible delay (i.e., asynchronous update to save

communication time)
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Heavy-ball or inertial acceleration

first presented by Polyak'64

closely related to Nesterov's acceleration, e.g.,
xFHD =) _ . grad(x®)) with X®) = x®) 4y (xB) — xF=1)

optimal convergence for strongly-convex quadratic programs but not for

general convex programs

nevertheless, often yields good numerical performance

—— Proximal gradient
—— Accelerated proximal gradient
—— Inertial proximal gradient

Distance to optimal value
=
o

10"
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number of iterations
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synchronous versus asynchronous computing

® asynchronous computing dates back as early as to [Bertsekas-Tsitsiklis'91]

® synchronization often causes idle waiting time

Agent 1] | idle | [ide | Agent 1] | | | []

Agent 2| | idle | | Agent 2| | | |

Agent 3] | [ idle Agent 3| | | | |
to t ty ty t o tsty t5 otz ts tol1o

(a) synchronous

(b) asynchronous
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Literature

Key ingredients of the proposed algorithm: stochastic subgradient,
inertial-acceleration, nonconvexity, asynchronous distributed. Many existing

works have some (but not all) of these ingredients.
® stochastic approximation or subgradient [Robbins-Monro’51; Nemirovski et.
al’'09; Davis-Drusvyatskiy'19; ...]

® heavy-ball or inertial-accelerated methods for convex or nonconvex
problems [Polyak'64; Ochs et. al'14; Sun et. al'19; Loizou-Richtarik’20; ...]

e distributed stochastic (sub)gradient [Agarwal-Duchi'll; Recht et. al'll; Lian
et. al'l5; Sra et. al'16; Mai-Johansson'20; ...]
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Theoretical results (informal)

Key assumption: the delay is upper bounded by 7 (that is roughly #workers).
Let « be the learning rate and K the maximum number of iterations.

1. nondifferentiable but weakly-convex loss (i.e., f is nondifferentiable but

f+ 2] |I? is convex for some p > 0)
violation of optimality condition = O ( (Co + < W + a T))
where Cy is a constant for the no-delay case.

2. smooth loss with nondifferentiable regularization
H H H H e _ 1 at?
violation of optimality condition = O (W (Co + \/7))
3. non-regularized smooth loss (i.e., f is smooth and r = 0)
violation of optimality condition = O ( (Co + W)>

Observation: the method can tolerate larger delay for nicer problems
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Experiment |: phase retrieval

Apply the proposed algorithm to

min L 7 [[AGO — bl

® for each setting, the algorithm runs to 400 epochs

® observations: inertial term accelerates convergence; delay almost does not
affect convergence speed
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Experiment ll: training 9-layer AIICNN [Springenberg et. al] on cifarl0
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Observations
® inertial term accelerates convergence
® delay slightly affects the convergence speed
® asynchronous update significantly improves the parallelization performance
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Experiment lll: sparse bilinear logistic regression on MNIST

Apply the proposed proximal stochastic gradient method to
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Conclusions

® presented a distributed stochastic proximal (sub)gradient method for
solving weakly-convex or smooth nonconvex stochastic problems
— master-worker architecture adopted
— outdated (sub)gradient allowed (due to asychrony)
® convergence rate results (in terms of stationarity violation) are given
— with weak-convexity but not smoothness, delay has non-decaying
effect on convergence rate
— with smoothness, delay effect decays about the iteration number
® numerical results shown for phase retrieval and (deep) machine learning
— inertial term accelerates the convergence
— delay almost does not slow down the convergence
— asynchronous computing yields higher parallelization speed up over

the synchronous implementation
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