
Distributed stochastic inertial-accelerated methods
with delayed derivatives

Yangyang Xu, Yibo Xu, Yonggui Yan, Jie Chen

partly supported by NSF Award #2053493 and IBM

INFORMS Optimization Society Conference
March 13, 2022

1 / 18



Motivations

• data too big to fit on a single machine (e.g., ImageNet about 150 GB)
• data collected by different agents (e.g., medical data, financial data)
• accessibility to high-performance computing resources
• slow convergence of certain reliable methods

Goals

• design new algorithms for distributed optimization
• fast convergence and high parallelization speed-up

2 / 18



Outline

1. Problem formulation and examples

2. Proposed algorithm and convergence rate results

3. Numerical results for phase retrieval and machine learning

3 / 18



Stochastic problem formulation

φ∗ = min
x∈Rn

φ(x) := F (x) + r(x), with F (x) := Eξ[f(x; ξ)]

• x decision variable (e.g., parameters of a neural network)
• ξ a random variable that can represent a stochastic scenario or a data

point
• reduces to the finite-sum problem when ξ ∼ {ξ1, . . . , ξN}.
• F is nonconvex and can be smooth or nonsmooth (better results can be

claimed if F is smooth)
• r is a regularization term (e.g., sparsity-promoting term in sparse neural

network training [Scardapane et. al’17])

4 / 18



Example I: phase retrieval

To recover phase from a set of measured magnitude

min
x

1
m

m∑
i=1

∣∣|Ai(x)|2 − |bi|2
∣∣

• x represents the underlying signal/image
• Ai the i-th measuring operation
• bi the i-th measured magnitude

Remark: the objective is nonconvex nonsmooth

Picture from https://aimi.stanford.edu/radiopaedia-list-ai-imaging-datasets
5 / 18

https://aimi.stanford.edu/radiopaedia-list-ai-imaging-datasets


Example II: sparse deep learning [Scardapane et al’17]

Sparsity-regularized deep learning model

min
θ

1
m

m∑
i=1

`(θ; xi, yi) + r1(θ) + r2,1(θ)

• θ: neural network parameters
• (xi, yi): training data point with label yi
• r1: `1-norm sparsity term
• r2,1: group sparsity term (to remove all connections from one neuron)

Benefits: mitigating over-fitting, generating lighter model (that can reduce
inference time and save storage)

6 / 18



Centralized computing architecture

• data distributed over working agents (or workers)
• model updated on server (or master)

7 / 18



parallel stochastic proximal subgradient method

Update by the parallel stochastic proximal subgradient method:

x(k+1) = proxαkr

(
x(k) − αk

p

∑p

j=1 ∇̃f(x(k); ξk,j)
)

• p: the number of workers
• ∇̃f denotes the subgradient
• ξk,j : the sample on j-th worker at the k-th update (can be a minibatch of

samples)

Limitations:

1. All workers are synchronized; this can cause waiting time and lead to low
parallelization speed-up

2. Slow convergence

We address the limitations by asynchronous computing and acceleration

8 / 18



Proposed Algorithm

1. Initialize x(0) ∈ dom(r) and set
x(1) = x(0)

2. Iterate for k = 1, 2, . . .
– Let g(k) = ∇̃f(x(k−τk); ξk)

computed by a worker;
– Choose αk > 0 and βk ≥ 0;
– Update the variable x by

x(k+1) = proxαkr

(
x(k) − αkg(k) + βk(x(k) − x(k−1))

)
.

Remark
• update performed by master
• inertial term βk(x(k) − x(k−1)) for acceleration
• ξk is a sample of ξ
• τk ≥ 0 measures the possible delay (i.e., asynchronous update to save

communication time)

9 / 18



Heavy-ball or inertial acceleration

• first presented by Polyak’64
• closely related to Nesterov’s acceleration, e.g.,

x(k+1) = x̂(k) − α · grad(x̂(k)) with x̂(k) = x(k) + ωk(x(k) − x(k−1))
• optimal convergence for strongly-convex quadratic programs but not for

general convex programs
• nevertheless, often yields good numerical performance

0 100 200 300 400 500
number of iterations

10-15

10-10

10-5

100

105

D
is

ta
nc

e 
to

 o
pt

im
al

 v
al

ue Proximal gradient
Accelerated proximal gradient
Inertial proximal gradient

10 / 18



synchronous versus asynchronous computing

• asynchronous computing dates back as early as to [Bertsekas-Tsitsiklis’91]

• synchronization often causes idle waiting time

Agent 1

Agent 2

Agent 3

t0 t1 t2

idle idle

idle

idle

Agent 1

Agent 2

Agent 3

t0 t1 t2 t3 t4 t5 t6 t7 t10t8 t9

(a) synchronous (b) asynchronous

11 / 18



Literature

Key ingredients of the proposed algorithm: stochastic subgradient,
inertial-acceleration, nonconvexity, asynchronous distributed. Many existing
works have some (but not all) of these ingredients.

• stochastic approximation or subgradient [Robbins-Monro’51; Nemirovski et.
al’09; Davis-Drusvyatskiy’19; ...]

• heavy-ball or inertial-accelerated methods for convex or nonconvex
problems [Polyak’64; Ochs et. al’14; Sun et. al’19; Loizou-Richtarik’20; ...]

• distributed stochastic (sub)gradient [Agarwal-Duchi’11; Recht et. al’11; Lian
et. al’15; Sra et. al’16; Mai-Johansson’20; ...]

12 / 18



Theoretical results (informal)

Key assumption: the delay is upper bounded by τ (that is roughly #workers).
Let α be the learning rate and K the maximum number of iterations.

1. nondifferentiable but weakly-convex loss (i.e., f is nondifferentiable but
f + ρ

2‖ · ‖
2 is convex for some ρ > 0)

violation of optimality condition = O
(

1√
K

(
C0 + ατ2

√
K

+ α2τ
))

where C0 is a constant for the no-delay case.

2. smooth loss with nondifferentiable regularization

violation of optimality condition = O
(

1√
K

(
C0 + ατ2

√
K

))
3. non-regularized smooth loss (i.e., f is smooth and r ≡ 0)

violation of optimality condition = O
(

1√
K

(
C0 + ατ√

K

))
Observation: the method can tolerate larger delay for nicer problems

13 / 18



Experiment I: phase retrieval

Apply the proposed algorithm to

min
x

1
m

∑m

i=1

∣∣|Ai(x)|2 − |bi|2
∣∣

• for each setting, the algorithm runs to 400 epochs
• observations: inertial term accelerates convergence; delay almost does not

affect convergence speed

14 / 18



Experiment II: training 9-layer AllCNN [Springenberg et. al] on cifar10

Observations
• inertial term accelerates convergence
• delay slightly affects the convergence speed
• asynchronous update significantly improves the parallelization performance

15 / 18



Experiment III: sparse bilinear logistic regression on MNIST

Apply the proposed proximal stochastic gradient method to

min
U,V,b

−
1
m

m∑
i=1

log

(
exp[tr(UyiXiVyi ) + byi ]∑C

j=1 exp[tr(UjXiVj) + bj ]

)
+ λ(‖U‖1 + ‖V‖1 + ‖b‖1),

16 / 18



Conclusions

• presented a distributed stochastic proximal (sub)gradient method for
solving weakly-convex or smooth nonconvex stochastic problems

– master-worker architecture adopted
– outdated (sub)gradient allowed (due to asychrony)

• convergence rate results (in terms of stationarity violation) are given
– with weak-convexity but not smoothness, delay has non-decaying

effect on convergence rate
– with smoothness, delay effect decays about the iteration number

• numerical results shown for phase retrieval and (deep) machine learning
– inertial term accelerates the convergence
– delay almost does not slow down the convergence
– asynchronous computing yields higher parallelization speed up over

the synchronous implementation

17 / 18



Reference

Yangyang Xu, Yibo Xu, Yonggui Yan, and Jie Chen. Distributed stochastic
inertial-accelerated methods with delayed derivatives for nonconvex problems.
To appear in SIAM Journal on Imaging Sciences, arXiv:2107.11513.

Thank you!!!

18 / 18



Reference

Yangyang Xu, Yibo Xu, Yonggui Yan, and Jie Chen. Distributed stochastic
inertial-accelerated methods with delayed derivatives for nonconvex problems.
To appear in SIAM Journal on Imaging Sciences, arXiv:2107.11513.

Thank you!!!

18 / 18


	Problem formulation and examples
	Proposed algorithm and convergence rate results
	Numerical results for phase retrieval and machine learning

