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Part I: lower complexity bound for affine-constrained problems

(joint work with Yuyuan Ouyang from Clemson University)
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Why lower complexity bounds

• provide understanding of the fundamental limit of a class of methods and
the difficulty of a class of problems
• tell if existing methods could be improved
• guide to design “optimal” methods
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First-order methods for smooth convex problems [Nesterov’04]

Consider problem
minimize

x∈Rn
f(x)

• f is convex and L-smooth, i.e.,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y

• lower bound: f(xk)− f(x∗) ≥ 3L‖x0−x∗‖2

32(k+1)2 if k ≤ n−1
2 and

xk ∈ x0 + span{∇f(x0),∇f(x1), . . . ,∇f(xk−1)}

• upper bound: f(xk)− f(x∗) ≤ 4L‖x0−x∗‖2

(k+1)2
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First-order methods for nonsmooth convex problems [Nesterov’04]

Consider problem
minimize

x∈Rn
f(x)

• f is convex and M -Lipschitz continuous on X = {x : ‖x− x0‖ ≤ R}, i.e.,

|f(x)− f(y)| ≤M‖x− y‖, ∀x,y ∈ X

• lower bound: f(xk)− f(x∗) ≥ MR
2(1+

√
k+1) if k ≤ n− 1, and

xk ∈ x0 + span{g0,g1, . . . ,gk−1}

where gt ∈ ∂f(xt)
• upper bound: f(xk)− f(x∗) ≤ 2MR√

k+1

Remark: non-smooth problems are harder than smooth ones.
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More examples

• first-order methods for stochastic convex problems [Agarwal et. al’12]

• first-order methods for finite-sum convex problems [Woodworth-Srebro’16]

• first-order and higher-order methods for nonconvex problems [Carmon et.
al’19a, Carmon et. al’19b]

• first-order decentralized methods for convex or nonconvex problems
[Scaman et. al’19, Sun-Hong’19]

• first-order methods for convex-concave saddle-point problems
[Zhang-Hong-Zhang’21]

• · · · · · ·
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linearly constrained problems by linear span [Ouyang-X.’21]1

Consider

min
x∈Rn

f(x), s.t. Ax = b

• problem class I: f is smooth (i.e., ∇f is Lipschitz) and convex
• problem class II: f is smooth and strongly convex
• algorithm class:

xt ∈ x0 + Span{∇f(x0),A>r0, . . . ,∇f(xt−1),A>rt−1} (Span)

where rt = Axt − b
• Without loss of generality, assume that x0 = 0

• error measure: |f(xt)− f∗| and ‖Axt − b‖, or ‖xt − x∗‖2

1Results for bilinear convex-concave problems by general first-order methods are shown in “Ouyang and Xu.
Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems. Math Prog.”
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lower bound for convex case

Setting of problem class:

• given positive integers m ≤ n, and t < m
2

• given positive numbers LA and Lf

Conclusion: there exists an instance of smooth linearly constrained convex
problem such that

• ∇f is Lf -Lipschitz continuous, ‖A‖2 = LA

• it has a unique primal-dual solution (x∗,y∗), i.e., satisfying KKT system
• in addition, for (Span), it holds

|f(xt)− f(x∗)| ≥ 3Lf‖x∗‖2

64(t+ 1)2 +
√

3LA‖x∗‖ · ‖y∗‖
16(t+ 1) ,

‖Axt − b‖ ≥
√

3LA‖x∗‖
4
√

2(t+ 1)
.

Tightness: the lower bounds match with upper bounds [Nesterov’05; X.’17]
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Worst-case instance

minimize
x

1
2x>Hx− h>x, s.t. Ax = b. (QP-Inst)

Here,

H =
Lf

4

[
B>B

In−2k

]
∈ Rn×n,h =

Lf

2
e2k,n,A =

LA

2
Λ,b =

LA

2
c,

and

Λ =
[

B O
O G

]
∈ Rm×n, c =

[
12k
0

]
, B :=


−1 1

. .
.

. .
.

−1 1
1

 ∈ R2k×2k

with G ∈ R(m−2k)×(n−2k) is any matrix of full row rank such that ‖G‖ = 2.

Remark: condition number of B proportional to k
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lower bound for strongly convex case

Setting of problem class:

• given positive integers m ≤ n, and t < m
2

• given positive numbers LA and µ

Conclusion: there exists an instance of smooth linearly constrained problem
such that

• f is smooth and µ-strongly convex, ‖A‖2 = LA

• it has a unique primal-dual solution (x∗,y∗)
• in addition, for (Span), it holds

‖xt − x∗‖2 ≥ 5L2
A‖y∗‖2

256µ2(t+ 1)2 .

• Again, higher than the result for unconstrained problems.
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Part II: Near-optimal FOMs for problems with O(1) functional constraints
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Complexity comparison for unconstrained and constrained problems

Oracle complexity of an optimal FOM to produce an ε-solution x̄ of the
problem F ∗ = minx

{
F (x) ≡ f(x) + r(x)

}
, i.e., F (x̄)− F ∗ ≤ ε:

• convex composite case: O(
√

L
ε

) from convergence rate O( L
k2 )

• strongly-convex composite case: O(
√

L
µ

log 1
ε

) from convergence rate

O
(
(1−

√
µ/L)k

)
Oracle complexity of the best FOM to produce an ε-solution x̄ ∈ X of problem
f∗ = minx∈X

{
f(x), s.t. Ax = b

}
, i.e., |f(x̄)− f∗| ≤ ε, ‖Ax̄− b‖ ≤ ε

• convex smooth case: O(1/ε) [Lan-Monteiro’16, Ouyang et. al’15,
Hamedani-Aybat’21, Sabach-Teboulle’20, ...]

• strongly-convex smooth case: O(1/
√
ε) [Hamedani-Aybat’21,

Sabach-Teboulle’20, Xu’21, Lan-Ouyang-Zhou’21, ...]

It is impossible to close the gap in general, but possible for special problems.
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Problem formulation

min
x∈Rn

F (x) := f(x) + h(x),

s.t. g(x) := [g1(x), . . . , gm(x)] ≤ 0,
(1)

• f is L-smooth and µ-strongly convex with µ > 0 (convexity can be
relaxed)
• h is closed convex and admits a simple proximal mapping,
• each gi is convex and smooth.
• specialty: m is small
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Example I: Neyman-Pearson classification [Scott-Nowak’05]

min
w

1
N+

∑
i∈N+

`(w; xi, 1), s.t. 1
N−

∑
i∈N−

`(w; xi,−1) ≤ γ (NPC)

• {xi}i∈N+ positive data and {xi}i∈N− negative data
• ` is a loss function, e.g., logistic regression loss
• γ > 0 is a false-positive error level
• Application examples: spam detection and medical diagnosis

[Rigollet-Tong’11]

Observation: a single nonlinear constraint but difficult to project onto the
feasible set
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Example II: fairness-constrained regression [Komiyama et. al’18]

min
ws,wu

w>s Vsws + w>u Vuwu − 2E(ys>ws + yu>wu)

s.t. w>s Vsws

w>s Vsws + w>u Vuwu
≤ γ

• (s,u, y) denotes one data point
• s the sensitive attributes (e.g., gender, race), u non-sensitive attributes, and
y the label

• model derived based on linear prediction ŷ = s>ws + u>wu

• Vs covariance of s and Vu covariance of u

• γ ∈ [0, 1] user-specified fairness parameter
• γ = 0: completely fair; γ = 1 fully fairness-ignorant

• equivalent to a convex QCQP with two quadratic inequality constraints
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First-order augmented Lagrangian method

Classic augmented Lagrangian function [Rockafellar’73]:

Lβ(x, z) = f(x) + h(x) + β
2

∥∥[g(x) + z
β

]+
∥∥2 − ‖z‖

2

2β .

• [Yan-He’20, Xu’21, ...]: Suppose (1) has a KKT point. Given ε > 0, if
βk+1 = σβk with σ > 1, then an ε-solution can be found by solving O(log 1

β0ε
)

primal subproblems, each to an O(ε) accuracy.
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Using accelerated proximal gradient (APG) as subroutine

• If dom(h) is bounded, then Lβ(·, z) is O(β)-smooth.

• To find an ε-solution of minx Lβ(x, z), it suffices to run O(
√

β
µ

log 1
ε
)

APG iterations.
• In order to have an ε-solution of (1), βk needs to increase to Θ( 1

ε
).

• Total APG iterations are O(ε− 1
2 log 1

ε
log 1

β0ε
), close to the lower bound

Θ(ε− 1
2 ) but worse than O(log 1

ε
).

Can we make a first-order subroutine better than the optimal APG?
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Key idea to have a better first-order subroutine

Let θ(x) = g(x) + z
β

. Then minx Lβ(x, z) is equivalent to

min
x∈Rn

max
y≥0

Φ(x,y) := F (x) + β
(
y>θ(x)− 1

2‖y‖
2) .

Let d(y) = minx Φ(x,y) and solve maxy≥0 d(y) to a certain accuracy.

• d is smooth and strongly concave, and ∇d(y) = β(θ(x(y))− y)
• Given y ≥ 0, finding δ-solution of minx Φ(x,y) requires
O(
√

β‖y‖+L
µ

log 1
δ
) first-order oracles.

first key: solution of maxy d(y) satisfies ‖ȳ‖ ≤ 2‖z∗‖+‖z‖
β

• However, accelerated gradient ascent to maxy≥0 d(y) has high complexity
because the smoothness constant of d is proportional to β2

µ

second key: cutting planes can be generated by strong-concavity of d
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The case with a single nonlinear constraint

Main idea (to approximately solve maxy≥0 d(y)):

1. Given ŷ ≥ 0, solve minx Φ(x, ŷ) to have a sufficiently accurate solution x̂.

2. Use β(θ(x̂)− ŷ) as an approximation of d′(ŷ).

3. If |[θ(x̂)]+ − ŷ| is sufficiently small, accept ŷ as an approximate solution of
maxy≥0 d(y)

4. Otherwise, d′(ŷ) has the same sign of θ(x̂)− ŷ, and thus the bisection method
can be applied.

Formal result:

• Bg is the bound of the Jacobi matrix of g on dom(h).
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Overall complexity for the case of a single nonlinear constraint

Given a target accuracy ε > 0,

1. O(
√
κ log 1

ε
) first-order oracles for approximately solving minx Φ(x, ŷ)

2. O(log 1
ε

) halves to reduce an interval sufficiently short

3. For every ALM subproblem, O(
√
κ(log 1

ε
)2) first-order oracles suffice

4. Hence, in total O(
√
κ(log 1

ε
)2 log 1

β0ε
) first-order oracles to produce an

ε-solution of (1).

Formal result:

• One factor log 1
ε

is to search ŷ; another factor log 1
ε

is to increase β in ALM.
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The case with multiple nonlinear constraints

Main idea (to approximately solve maxy≥0 d(y)):

1. Given ŷ ≥ 0, solve minx Φ(x, ŷ) to have a sufficiently accurate solution x̂.

2. Use β(θ(x̂)− ŷ) as an approximation of ∇d(ŷ).

3. If |[θ(x̂)]+ − ŷ| is sufficiently small, accept ŷ as an approximate solution of
maxy≥0 d(y)

4. Otherwise, 〈θ(x̂)− ŷ,y− ŷ〉 ≥ 0 for all y near the solution of maxy≥0 d(y),
and thus a cutting-plane method can be applied.

Formal result:
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Overall complexity for the case of multiple nonlinear constraints
Given a target accuracy ε > 0,

1. O(
√
κ log 1

ε
) first-order oracles for approximately solving minx Φ(x, ŷ)

2. O(m log 1
ε

) cutting planes by the volumetric-center [Vaidya’96] cutting-plane
method to reduce a polytope sufficiently small

3. For every subproblem, O(m
√
κ(log 1

ε
)2) first-order oracles suffice

4. Hence, in total O(m
√
κ(log 1

ε
)2 log 1

β0ε
) first-order oracles to produce an

ε-solution of (1).

Formal result:

• Cutting-plane based FOM can be better than APG-based FOM in the regime of
m = o( 1√

ε
).
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Extension to convex cases

Suppose that f is convex in (1). Apply the previous described method to the
perturbed problem

min
x∈Rn

f(x) + ε
4Dh
‖x− x0‖2 + h(x),

s.t. g(x) := [g1(x), . . . , gm(x)] ≤ 0,

or apply a proximal augmented Lagrangian method with a cutting-plane based
first-order method for solving each subproblem.

• total number of first-order oracles: Õ(m/
√
ε) as compared to O(1/ε).
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Extension to problems with nonconvex objective but convex
constraints

Suppose that f is nonconvex L-smooth in (1). Apply the previous described
method in the framework of proximal point method to each subproblem

x̄k+1 ≈ arg min
x∈Rn

f(x) + Lf‖x− x̄k‖2 + h(x),

s.t. g(x) := [g1(x), . . . , gm(x)] ≤ 0,

• total number of first-order oracles: Õ(m/ε2) as compared to O(1/ε2.5).
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Experiments on QCQP

min
x∈Rn

1
2 x>Q0x + x>c0,

s.t. 1
2 x>Qjx + x>cj + dj ≤ 0, j = 1, . . . ,m;

xi ∈ [li, ui], i = 1, . . . , n.

(QCQP)

• Q0 is generated to be positive definite
• Qj is positive semidefinite but rank-deficient for each j = 1, . . . ,m
• li = −10 and ui = 10 for each i
• All dj are negative so the Slater’s condition holds.
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Numerical results for m = 1, n = 1000

• For each subproblem, both methods use a random generated starting point.

Observation: cutting-plane based iALM requires far fewer gradient evaluations
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Numerical results for m = 2, n = 1000

• For each subproblem, both methods use a random generated starting point.

Observation: cutting-plane based iALM requires far fewer gradient evaluations
but scales worse to m.
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Numerical results for m = 5, n = 1000

• For each subproblem, both methods use a random generated starting point.

Observation: cutting-plane based iALM requires far fewer gradient evaluations
but scales almost linearly to m.
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Comparison to an accelerated primal-dual method [Hamedani-Aybat’21]

primal residual dual residual complementarity
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• QCQP with m = 2 constraints
• A 10−8-KKT point is targeted
• 10 independent trials performed

Observation: the proposed method uses fewer gradients.
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Comparison to an interior-point method

Observation: the proposed method performs worse for small-size instances but
better for large-size ones.
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Conclusions

• Gave a lower complexity bound result of first-order methods for solving
affine-constrained convex smooth problems
• The bound is higher than that for unconstrained problems

• Presented a cutting-plane based first-order method for solving problems
with a few nonlinear convex constraints
• When there are O(1) constraints, the oracle complexity is in almost

the same order as an optimal method for solving unconstrained
convex or nonconvex problems
• Demonstrated the performance of the proposed method on QCQP
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