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Part I: lower complexity bound for affine-constrained problems

(joint work with Yuyuan Ouyang from Clemson University)
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Why lower complexity bounds

® provide understanding of the fundamental limit of a class of methods and

the difficulty of a class of problems
® tell if existing methods could be improved

® guide to design “optimal” methods
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First-order methods for smooth convex problems [Nesterov’04]

Consider problem

minimize f(x)
x€R™

® fis convex and L-smooth, i.e.,

[VIx) =V < Lix =yl Vx¥

® lower bound: f(x*) — f(x*) > % if k<251 and

xFex+ span{Vf(xO),Vf(xl), R Vf(xk_l)}

4L ||x% —x* |2

® upper bound: f(x") — f(x") EE

IN
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First-order methods for nonsmooth convex problems [Nesterov’04]

Consider problem

minimize f(x)

® fis convex and M-Lipschitz continuous on X = {x: ||x — x°|| < R}, i.e,,

lf(x) = fI < Mlx =y, Vx,y € X

® lower bound: f(x*) — f(x*) > % if tk<n-—1, and

x" € x” +span{g’, g',...,g" '}
where g' € 9f(x")

® upper bound: f(x*) — f(x*) < \2/%

Remark: non-smooth problems are harder than smooth ones.
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More examples

first-order methods for stochastic convex problems [Agarwal et. al'12]
first-order methods for finite-sum convex problems [Woodworth-Srebro’16]

first-order and higher-order methods for nonconvex problems [Carmon et.
al'19a, Carmon et. al'19b]

first-order decentralized methods for convex or nonconvex problems
[Scaman et. al'19, Sun-Hong'19]

first-order methods for convex-concave saddle-point problems

[Zhang-Hong-Zhang'21]
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linearly constrained problems by linear span [Ouyang-X.21]!

Consider

min f(x), s.t. Ax=Db
xER™

® problem class I: f is smooth (i.e., V f is Lipschitz) and convex
® problem class Il: f is smooth and strongly convex

® algorithm class:
x' € x° + Span{Vf(x"),ATr’,... Vf(x'"""), AT} (Span)

wherer! = Ax' — b
® Without loss of generality, assume that x° = 0

® error measure: |f(x') — f*| and ||Ax' —b||, or ||x* — x*||?

! Results for bilinear convex-concave problems by general first-order methods are shown in “Ouyang and Xu.
Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems. Math Prog.”
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lower bound for convex case

Setting of problem class:

m

® given positive integers m < n, and t < 5

® given positive numbers L4 and Ly

Conclusion: there exists an instance of smooth linearly constrained convex
problem such that

® Vfis Ly-Lipschitz continuous, |

Al2=1La
® it has a unique primal-dual solution (x*,y"), i.e., satisfying KKT system

® in addition, for (Span), it holds

, * 3Lygllx*[1> | v3Lallx*| - Iyl
ty _ > f
[FO) = TG = Gat+1)2 T 16(t+1)
Axt — | > Y3Laldl
4v2(t + 1)

Tightness: the lower bounds match with upper bounds [Nesterov'05; X.'17]
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Worst-case instance

1
minimize EXTHX —h'x, st. Ax=h. (QP-Inst)
x
Here,
Lf BB Lf La La
H=L cRV" h= L A= AAbp= A
4 { L ok g Ok 2 2 ¢
and
—1 1
B O 1o - - 2k x 2k
A= R™XM ¢ = B = o Rk %
1

with G € R(m—=2k)x(n—=2k) i5 any matrix of full row rank such that |G| = 2.

Remark: condition number of B proportional to k
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lower bound for strongly convex case

Setting of problem class:

® given positive integers m < n, and t <

® given positive numbers L4 and p

Conclusion: there exists an instance of smooth linearly constrained problem

such that

® f is smooth and p-strongly convex,

|All2 = La
® it has a unique primal-dual solution (x*,y™*)
® in addition, for (Span), it holds

2o LAY
= 256p2(t 4 1)

t

[Ix" = x|

® Again, higher than the result for unconstrained problems.
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Part 11: Near-optimal FOMs for problems with O(1) functional constraints
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Complexity comparison for unconstrained and constrained problems

Oracle complexity of an optimal FOM to produce an e-solution X of the
problem F* = miny {F(x) = f(x) + r(x)}, ie, F(x)—F"<e:

® convex composite case: O(\/g) from convergence rate O(k—Lz)
® strongly-convex composite case: O(\/%log 1) from convergence rate
O((1 = \/u/L)*)

Oracle complexity of the best FOM to produce an e-solution X € X of problem
f* = minxex {f(x)7 st. Ax = b}, ie, |f(X)— f"| <e||Ax—Db|| <€

® convex smooth case: O(1/e) [Lan-Monteiro'16, Ouyang et. al'15,
Hamedani-Aybat'21, Sabach-Teboulle’'20, ...]

® strongly-convex smooth case: O(1/1/€) [Hamedani-Aybat'21,
Sabach-Teboulle’20, Xu'21, Lan-Ouyang-Zhou'21, ...]

It is impossible to close the gap in general, but possible for special problems.
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Problem formulation

min F(x) := f(x) + h(x),

xERNP

s.t. g(x) := [g1(x),...,9m(x)] £ 0,

(1)

f is L-smooth and p-strongly convex with p > 0 (convexity can be

relaxed)
h is closed convex and admits a simple proximal mapping,
each g; is convex and smooth.

specialty: m is small
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Example I: Neyman-Pearson classification [Scott-Nowak'05]

n}'\i,n]\%r Z L(w; x4, 1), s.t. % Z L(w;x;,—1) <~ (NPQ)
€Ny ieEN_

{xi}ien, positive data and {x;}:cn_ negative data

£ is a loss function, e.g., logistic regression loss
® v > 0 is a false-positive error level
® Application examples: spam detection and medical diagnosis

[Rigollet-Tong'11]

Observation: a single nonlinear constraint but difficult to project onto the
feasible set
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Example Il: fairness-constrained regression [Komiyama et. al'18]

min WSTVSWS + wIVuwu — QE(ysTWS + yuTwu)

Ws,Wq,

T
w, Vsw
st. — s S _If <
Wi Vsws + Wy V,wy,

(s,u,y) denotes one data point

® s the sensitive attributes (e.g., gender, race), u non-sensitive attributes, and

y the label
® model derived based on linear prediction § =sTws + u' wy,

® V. covariance of s and V,, covariance of u

v € [0, 1] user-specified fairness parameter
® ~ = 0: completely fair; v = 1 fully fairness-ignorant

® equivalent to a convex QCQP with two quadratic inequality constraints
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First-order augmented Lagrangian method

Classic augmented Lagrangian function [Rockafellar'73]:

Lo(x,2) = f(x) +h(x) + £ ||[g(x) + 5]+ || — 120"

Algorithm 1: First-order inexact augmented Lagrangian method for (1)

1 Initialization: choose x°,2°, and By > 0
2 for k=0,1,... do
Apply a first-order method to find x¥*1 as an approximate solution of minx L, (x,2").
Update z by z°! = [z + Brg(xF1)]4.
Choose B+1 > Bk-
if a stopping condition is satisfied then
| Output (x**1,2z5+1) and stop

N o ap w

® [Yan-He'20, Xu'21, ...]: Suppose (1) has a KKT point. Given € > 0, if
Br4+1 = 0By with o > 1, then an e-solution can be found by solving O(log ﬁ)

primal subproblems, each to an O(e) accuracy.
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Using accelerated proximal gradient (APG) as subroutine

If dom(h) is bounded, then Ls(+,2) is O(8)-smooth.

To find an e-solution of minyx £3(x, z), it suffices to run O(\/glog %)
APG iterations.

In order to have an e-solution of (1), Bk needs to increase to ©(1).

Total APG iterations are 0(57% log % log B%)s) close to the lower bound

©(c~2) but worse than O(log 1.

Can we make a first-order subroutine better than the optimal APG?
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Key idea to have a better first-order subroutine

Let 6(x) = g(x) + %. Then minx L (x,2) is equivalent to

. L T et 2
min max ®(x,y) = F(x) + 5 (y"6(x) = 3llyll*) -

Let d(y) = mink ®(x,y) and solve maxy>o d(y) to a certain accuracy.

® d is smooth and strongly concave, and Vd(y) = 8(0(x(y)) — y)
® Given y > 0, finding J-solution of minx ®(x,y) requires
O(4/ W log $) first-order oracles.
first key: solution of maxy d(y) satisfies ||y|| < w

® However, accelerated gradient ascent to maxy>o d(y) has high complexity
2
because the smoothness constant of d is proportional to %

second key: cutting planes can be generated by strong-concavity of d
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The case with a single nonlinear constraint

Main idea (to approximately solve maxy>o d(y)):

1. Given y > 0, solve minx ®(x,y) to have a sufficiently accurate solution %.

2. Use B(0(%) — y) as an approximation of d'(y).

3. If [[0(%)]+ — ¥| is sufficiently small, accept § as an approximate solution of
maxy >0 d(y)

4. Otherwise, d’(y) has the same sign of 8(%X) — ¥, and thus the bisection method
can be applied.

Formal result:

Lemma 8 Given § > 0 and § > 0, let X € dom(h) be a point satisfying dist(0,0xP(X,y)) < %. If
[6®)]+ —F| < 32, then |[0(x(¥))]+ — F| < 8. Otherwise, |[0(x(¥))]+ — ¥ > 3, and Vd(3)(8(X) — ) > 0.

® By is the bound of the Jacobi matrix of g on dom(h).
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Overall complexity for the case of a single nonlinear constraint

Given a target accuracy € > 0,

1. O(Vklog é) first-order oracles for approximately solving minx ®(x, y)
2. O(log é) halves to reduce an interval sufficiently short

3. For every ALM subproblem, O(y/k(log 5)2) first-order oracles suffice
4

. Hence, in total O(v/k(log é)z log ﬁ) first-order oracles to produce an
e-solution of (1).

Formal result:

Theorem 8 (Iteration complexity when m = 1) Suppose that Assumptions 1 through 4 hold, and m = 1

in (1). Let (Bo,0,€,71,72) be the input of Algorithm 7 and {(x*,y*,2z*)}r>0 be the generated sequence.
2

Suppose & = min {5, 1/ e‘gs’;l])} <{e, 243”(“:ﬁk35) },Vk > 0. Let ex = € for all k > 0. Then Algorithm 7

needs at most Tyopa = O( L +Lg(“1+”z'”) | log6|3) evaluations on f, Vf, g, and Jg to produce an e-KKT
point of (1).

® One factor logé is to search y; another factor logé is to increase 8 in ALM.
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The case with multiple nonlinear constraints

Main idea (to approximately solve maxy>o d(y)):

1. Given y > 0, solve minx ®(x,y) to have a sufficiently accurate solution %.
2. Use B(0(%) — y) as an approximation of Vd(y).
3. If [[0(%)]+ — ¥| is sufficiently small, accept § as an approximate solution of

maxy > d(y)

4. Otherwise, (8(X) —y,y —¥) > 0 for all y near the solution of maxy>q d(y),

and thus a cutting-plane method can be applied.

Formal result:

LEMMA 3.11. Let b > 0, and suppose ||y| < b. Given ¢ >0 and § >0, let
% € dom(h) be a point satisfying dist(0,0x®(%,¥)) < min{2- ;ide 1. If
10X)]+ — Il < Z. then [[B(x(3)]+ — JIl < 8. Otherwise, |[[6( )) + fyH > 3,
and also (8(X) — y,y y) > 0 for any 'y € B,(¥) N By, where n = mm{b,mr}, and
1+ is the positive root of the equation

+JB

(3.13) (77 +4/2 B" =3, with By= max, ¢ g Vd(y).
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Overall complexity for the case of multiple nonlinear constraints

Given a target accuracy € > 0,

1.
2.

O(v/klog %) first-order oracles for approximately solving minx ®(x,y)

O(mlog %) cutting planes by the volumetric-center [Vaidya'96] cutting-plane

method to reduce a polytope sufficiently small
For every subproblem, O(m+/k(log %)2) first-order oracles suffice

Hence, in total O(m+/k(log %)2 log

e-solution of (1).

3(1,5) first-order oracles to produce an

Formal result:

® Cutting-plane based FOM can be better than APG-based FOM in the regime of

THEOREM 4.2 (oracle complexity).  Suppose that Assumptions 1-4 hold. Let
(Bosa,8,71,72) be the input of Algorithm 8 and {(x*,y*,z*)}r>0 be the generated
sequence. Suppose & = min {e, 5’;3(”{:]1)} < {e, 243“@:&3;)} for all k > 0. Let
e =& for all k > 0. Then, to produce an e-KKT point of (1.1), Algorithm 8 needs

at most Trotal = O("M/M‘ loge|?(logm + |logel)) evaluations on f, Vf,

g. and Jg.

m = 0(\%).
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Extension to convex cases

Suppose that f is convex in (1). Apply the previous described method to the
perturbed problem

. 012
min F() + b x = x°|1* + o),

s.t. g(x) 1= [91(%), . . g (x)] < 0,

or apply a proximal augmented Lagrangian method with a cutting-plane based
first-order method for solving each subproblem.

® total number of first-order oracles: O(m/+/€) as compared to O(1/e).
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Extension to problems with nonconvex objective but convex
constraints

Suppose that f is nonconvex L-smooth in (1). Apply the previous described
method in the framework of proximal point method to each subproblem

%"~ argmin f(x) + Lf|lx — %*|* + h(x),
xER™

.. g(%) = [91(), ., g (x)] < 0,

® total number of first-order oracles: O(m/e?) as compared to O(1/2?).
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Experiments on QCQP

min %XTQ()X + xTco,
xER™

s.t. %XTijerch +d; <0,57=1,...,m; (QCQP)
i € [liyus],i=1,...,n.
® Qo is generated to be positive definite
® Q; is positive semidefinite but rank-deficient for each j =1,...,m

l; = —10 and u; = 10 for each ¢

All d; are negative so the Slater’s condition holds.
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Numerical results for m = 1,n = 1000

APG-based iALM

[

proposed cutting-plane iALM

#func pres dres

compl ‘ #grad pres dres compl

total running time = 774.2 sec.

total running time = 12.4 sec.

9420 5.13e-02  9.65e-05
31298 1.65e-06  9.46e-05
103112 5.40e-08  9.77e-05
335030  6.51e-09  9.96e-05

1087988 0.00e+00  9.95e-05

2.63e-03
8.46e-08
2.77e-09
3.34e-10
4.57e-11

2136 5.13e-02  6.40e-11  2.64e-03
1434 4.23e-07  9.20e-11  2.17e-08
1068 4.22e-10  2.63e-10  2.17e-11
1080 0.00e+00 1.74e-08 4.84e-11
1104 2.29-11  9.23e-09 1.17e-12

total running time = 760.0 sec.

total running time = 12.1 sec.

9258 5.78e-02  9.78e-05
30672 2.10e-06  9.99e-05
101730 4.57e-08  9.85e-05
329990 6.44e-09  9.93e-05

1080970  0.00e+00  1.00e-04

3.34e-03
1.21e-07
2.64e-09
3.72e-10
4.06e-11

1926 5.78-02  4.94e-09  3.34e-03
1440 5.85e-07  3.4le-10  3.38e-08
1050 0.00e4+00  7.90e-09  4.03e-10
1074 0.00e4+00  2.18e-07 1.42e-10
1104 2.75e-10  1.84e-09  1.59e-11

total running time = 780.9 sec.

total running time = 12.4 sec.

|
out.Iter [ 3] #grad
trial 1
1 1 5056
2 10 16802
3 10? 55359
4 10% || 179877
5 10* || 584145
trial 2
1 1 4969
2 10 16466
3 10% || 54617
4 10% || 177171
5 10" || 580377
trial 3
1 1 5100
2 10 17035
3 10? 56348
4 10° || 182583
5 10* || 595012

9502 4.37e-02  9.66e-05
31732 0.00e+00  9.33e-05
104954 1.43e-07  9.79e-05
340070 0.00e4+00  9.63e-05
1108228  1.81e-10  9.99e-05

1.91e-03
8.08e-08
6.25e-09
5.12e-10
7.92e-12

2088 4.37e-02  2.53e-09 1.91e-03
1428 4.34e-07  7.52e-09  1.90e-08
1092 0.00e4+00  2.75e-13  2.36e-10
1122 4.33e-09  4.76e-07  1.89e-10
1164 0.00e4+00 1.88e-09 2.0le-11

® For each subproblem, both methods use a random generated starting point.

Observation: cutting-plane based iALM requires far fewer gradient evaluations
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Numerical results for m = 2,n = 1000

APG based iIALM | proposed cutting-plane iALM
out.Iter I i} ]] #grad  #func pres dres compl | #erad pres dres compl

trial 1 total running time = 1348.0 sec. total running time = 51.0 sec.
1 1 5551 10342 4.45e-02  8.71e-05 1.40e-03 | 3342  4.45e-02  1.06e-09  1.40e-03
2 10 18330 34144 0.00e+00  9.62e-05 6.47e-08 | 3384 3.19e-07  9.17e-09  9.98¢-09
3 10% 59680 111160 8.81e-08  9.77e-05 2.71e-09 | 3522 6.01e-09  9.15e-10  2.44e-10
4 10° || 194236 361774  0.00e+00 9. 5 9.15e-11 | 3582 1.36e-10  3.84e-09  6.17e-12
5 10% || 629359 1172200  0.00e+00 9.99e-05 7.65e-12 | 3678  2.66e-11  1.60e-09 8.13e-13
trial 2 total running time = 1299.4 sec. total running time = 49.5 sec.
1 1 5362 9990 6.60e-02  9.05e-05 3.10e-03 | 3180  6.60e-02  8.27e-09  3.10e-03
2 10 17646 32870 2.74e-06  9.26e-05 1.34e-07 | 3282  6.17e-07  2.67e-10 2.91e-08
3 102 || 57832 107718 1.41e-08  9.82e-05 2.79¢-09 | 3372  5.9le-10  9.05e-11 2.6le-11
4 10% || 187544 349310  0.00e+00  9.88¢-05  2.70e-10 | 3450 4.97¢-10  6.76e-09  2.34e-11
5 10% || 606432 1129498  9.88e-11  9.97¢-05  7.38¢-12 3528 1.82e-11  5.23¢-09  1.95¢-12
trial 3 total running time = 1337.1 sec. total running time = 49.2 sec.
1 1 5464 10180 5.50e-02  9.51e-05  2.25e-03 [ 3156 5.50e-02  6.27e-09  2.25e-03
2 10 18039 33602 1.78e-06  9.90e-05 8.15e-08 | 3324  5.16e-07  1.76e-10  2.07e-08
3 10% || 59505 110834  2.88¢-08  9.95¢-05 1.86e-09 | 3384  5.93e-09  8.30e-09 2.49e-10
4 10° || 192301 358170  3.78¢-09  9.99e-05 1.45¢-10 | 3504  0.00e+00 1.02e-09  3.00e-11
5 107 || 627235 1168244  6.8le-11  1.00e-04 9.17e-12 | 3528  5.23e-11  2.78e-09 1.70e-12

® For each subproblem, both methods use a random generated starting point.

Observation: cutting-plane based iALM requires far fewer gradient evaluations

but scales worse to m.
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Numerical results for m = 5,n = 1000

APG based iALM proposed cutting-plane iALM
out.Iter I 3 #erad #func pres dres compl | #grad pres dres compl

trial 1 total running time = 2833.1 sec. total running time = 156.8 sec.
1 1 5537 10316 7.93e-02  9.91e-05 2.90e-03 | 6714  7.93e-02 2.91e-09  2.90e-03
2 10 18417 34306  1.12e-06  9.83e-05 4.28e-08 | 6984  8.93e-07 4.32¢-09 3.27e-08
3 102 || 60058 111864  5.83e-08 9.62e-05 2.25e-09 | 7158  4.64e-09 1.50e-09  2.02e-10
4 10° || 195894 364862  3.14e-09  9.88¢-05 1.64e-10 | 7314  4.37e-10  4.28¢-09  1.64e-11
5 107 || 640357 1192684 9.40e-10  9.97e-05 3.51e-11 | 7614  2.79e-11 8.77e-09 1.74e-12
trial 2 total running time = 2786.0 sec. total running time = 160.7 sec.
1 1 5537 10316 6.77e-02  8.21e-05 2.42e-03 | 6900  6.77e-02  6.16e-09  2.42e-03
2 10 18170 33846 6.24e-07  9.21e-05  2.43e-08 | 7110  7.39e-07 2.64e-09  2.75e-08
3 102 || 59607 111024  2.66e-08 9.73e-05 1.71e-09 | 7224  2.81e-09 9.46e-09 1.90e-10
4 10° || 194483 362234  1.21e-08  9.99e-05 3.19e-10 | 7512  6.61e-10  4.34e-09  2.53e-11
5 10* || 636109 1184772  7.58e-11  9.94e-05 1.76e-11 | 7698  3.94e-11 7.84e-09 1.73e-12
trial 3 total running time = 2820.0 sec. total running time = 155.3 sec.
1 1 5595 10424 8.47e-02  8.51e-05 3.26e-03 | 6594  8.47e-02 9.82e-09  3.26e-03
2 10 18461 34388  7.78e-07  9.55e-05 3.07e-08 | 6882  8.64e-07 5.52e-09  3.33e-08
3 10% || 60422 112542  3.78¢-09  9.93e-05 4.10e-09 | 7116  3.42¢-09 1.52¢-10 1.83e-10
4 10° || 196869 366678  7.70e-09 9.87e-05 3.05e-10 | 7260  7.35e-11  5.28¢-09 1.91e-11
5 10* || 640997 1193876 3.63e-10  9.95e-05 1.37e-11 | 7488  6.86e-11 6.05e-09 2.72-12

® For each subproblem, both methods use a random generated starting point.

Observation: cutting-plane based iALM requires far fewer gradient evaluations

but scales almost linearly to m.
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Comparison to an accelerated primal-dual method [Hamedani-Aybat’21]

primal residual dual residual complementarity
0 5 5
—v— proposed iALM —v—proposed iALM —v— proposed iALM
I — APDB % 0 —— APDB 2 0 —— APDB
g 5 <4 £
= S S
i 5" %
o -10 =3 T al
kS] 2 0 8 10
15 -15 -15
1 2 3 4 1 2 3 4 1 2 3 4
number of gradients . 10% number of gradients 19 number of gradients . 19%

® QCQP with m = 2 constraints
® A 107 8-KKT point is targeted

® 10 independent trials performed

Observation: the proposed method uses fewer gradients.
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Comparison to an interior-point method

[ i Proposed cutting-plane iALM | SDPT3
[ Trial [ Time(h:m:s)  #grad pres dres compl | Time(h:m:s) pres dres compl

Problem size: m = 2, n = 1000

1 16776 0.00e4+00  1.13e-10  3.42e-12 0:0:11 3.30e-10 1.03e-09  4.12e-11

2 16812  0.00e+00  1.89¢-09  8.75e-13 0:0:16 2.14e-10 4.40e-10  9.25e-12

3 17004 4.09e- 1.19e-09  1.91e-12 0:0:11 0.00e400  2.04e-09  8.31e-11

4 16698 2.69e-09  2.27e-12 0:0:11 0.00e400  8.00e-09 1.61e-08

5 16578 .32e-11 3.19e-09  2.77e-12 0:0:17 1.58e-09 8.16e-10  9.10e-11
Problem size: m = 2, n = 5000

1 0:11:9 21630 5.85e-10 1 2 0:40:44 0.00e400  8.26e-09  5.71e-10

2 0:11:11 21642 3.58e-11 9.17e-10  1.63e-12 0:52:23 6.55e-08 1.18e-09  2.84e-09

3 0:11:6 21504 1.95e-11 6.10e-10  7.19e-13 0:50:39 5.45e-08 NaN NaN

4 0:11:12 21678 3.13e-11 4.67e-09  1.04e-12 0:40:38 0.00e4+00  1.12e-08  1.59e-09

5 0:11:7 21516 1.99¢e-11 8.59¢-09  9.04e-13 0:36:17 2.71e-08 1.10e-08  1.28e-09
Problem size: m = 2,n = 10000

1 22332 0.00e4+00  6.32¢-10  2.37e-13 5:55:22 2.41e-07  3.10e-08  1.33e-08

2 22296 4.99e-12 6.36e-09  1.30e-12 6:20:3 0.00e4+00  4.60e-10  3.19e-09

3 22296 1.73e-11 2.54e-09  7.43e-13 6:13:5 0.00e400  3.44e-08  8.17e-09

4 0:58:9 22368 2.05e-11 1.14e-08  9.17e-13 : 0.00e400  2.16e-08  7.70e-09

5 1:15:19 22182 7.95¢-12 1.04¢-08  1.30e-12 0.00e4-00  3.70e-08  1.48¢-09

Observation: the proposed method performs worse for small-size instances but

better for large-size ones.
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Conclusions

® Gave a lower complexity bound result of first-order methods for solving

affine-constrained convex smooth problems
® The bound is higher than that for unconstrained problems
® Presented a cutting-plane based first-order method for solving problems
with a few nonlinear convex constraints
® When there are O(1) constraints, the oracle complexity is in almost
the same order as an optimal method for solving unconstrained
convex or nonconvex problems
® Demonstrated the performance of the proposed method on QCQP
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