Accelerated primal-dual methods for linearly constrained convex problems

Yangyang Xu

SIAM Conference on Optimization

May 24, 2017
Accelerated proximal gradient

For convex composite problem: minimize $F(x) := f(x) + g(x)$

- f: convex and Lipschitz differentiable
- g: closed convex (possibly nondifferentiable) and simple

Proximal gradient:

$$x^{k+1} = \arg\min_x \langle \nabla f(x^k), x \rangle + \frac{L_f}{2} \|x - x^k\|^2 + g(x)$$

- convergence rate: $F(x^k) - F(x^*) = O(1/k)$

Accelerated Proximal gradient [Beck-Teboulle’09, Nesterov’14]:

$$x^{k+1} = \arg\min_x \langle \nabla f(\hat{x}^k), x \rangle + \frac{L_f}{2} \|x - \hat{x}^k\|^2 + g(x)$$

- \hat{x}^k: extrapolated point

- convergence rate (with smart extrapolation): $F(x^k) - F(x^*) = O(1/k^2)$

This talk: ways to accelerate primal-dual methods
Part I: accelerated linearized augmented Lagrangian
Affinely constrained composite convex problems

$$\min_x F(x) = f(x) + g(x), \quad \text{subject to } Ax = b \quad \text{(LCP)}$$

- f: convex and Lipschitz differentiable
- g: closed convex and simple

Examples

- nonnegative quadratic programming: $f = \frac{1}{2} x^\top Q x + c^\top x$, $g = \nu_{\mathbb{R}^n_+}$
- TV image denoising: $\min \left\{ \frac{1}{2} \| X - B \|_F^2 + \lambda \| Y \|_1, \text{ s.t. } \mathcal{D}(X) = Y \right\}$
Augmented Lagrangian method (ALM)

At iteration k,

$$
\begin{align*}
 x^{k+1} &\leftarrow \arg \min_x f(x) + g(x) - \langle \lambda^k, Ax \rangle + \frac{\beta}{2} \|Ax - b\|^2, \\
 \lambda^{k+1} &\leftarrow \lambda^k - \gamma(Ax^{k+1} - b)
\end{align*}
$$

- augmented dual gradient ascent with stepsize γ
- β: penalty parameter; dual gradient Lipschitz constant $1/\beta$
- $0 < \gamma < 2\beta$: convergence guaranteed
- also popular for (nonlinear, nonconvex) constrained problems

x-subproblem as difficult as original problem
Linearized augmented Lagrangian method

- Linearize the smooth term f:
\[
x^{k+1} \leftarrow \arg \min_x \langle \nabla f(x^k), x \rangle + \frac{\eta}{2} \|x - x^k\|^2 + g(x) - \langle \lambda^k, Ax \rangle + \frac{\beta}{2} \|Ax - b\|^2.
\]

- Linearize both f and $\|Ax - b\|^2$:
\[
x^{k+1} \leftarrow \arg \min_x \langle \nabla f(x^k), x \rangle + g(x) - \langle \lambda^k, Ax \rangle + \langle \beta A^\top r^k, x \rangle + \frac{\eta}{2} \|x - x^k\|^2,
\]
where $r^k = Ax^k - b$ is the residual.

Easier updates and nice convergence speed $O(1/k)$
Accelerated linearized augmented Lagrangian method

At iteration k,
\[
\hat{x}^k \leftarrow (1 - \alpha_k)\bar{x}^k + \alpha_k x^k,
\]
\[
x^{k+1} \leftarrow \arg \min_x \langle \nabla f(\hat{x}^k) - A^\top \lambda^k, x \rangle + g(x) + \frac{\beta_k}{2} \|Ax - b\|^2 + \frac{\eta_k}{2} \|x - x^k\|^2,
\]
\[
\bar{x}^{k+1} \leftarrow (1 - \alpha_k)\bar{x}^k + \alpha_k x^{k+1},
\]
\[
\lambda^{k+1} \leftarrow \lambda^k - \gamma_k (Ax^{k+1} - b).
\]

- Inspired by [Lan '12] on accelerated stochastic approximation
- reduces to linearized ALM if $\alpha_k = 1, \beta_k = \beta, \eta_k = \eta, \gamma_k = \gamma, \forall k$
 - convergence rate: $O(1/k)$ if $\eta \geq L_f$ and $0 < \gamma < 2\beta$
- adaptive parameters to have $O(1/k^2)$ (next slides)
Better numerical performance

Objective error

Feasibility Violation

- Tested on quadratic programming (subproblems solved exactly)
- Parameters set according to theorem (see next slide)
- **Accelerated ALM significantly better**
Guaranteed fast convergence

Assumptions:

- There is a pair of primal-dual solution \((x^*, \lambda^*)\).
- \(\nabla f\) is Lipschitz continuous: \(\|\nabla f(x) - \nabla f(y)\| \leq L_f \|x - y\|

Convergence rate of order \(O(1/k^2)\):

- Set parameters to
 \[
 \forall k: \alpha_k = \frac{2}{k + 1}, \gamma_k = k\gamma, \beta_k \geq \frac{\gamma_k}{2}, \eta_k = \frac{\eta}{k},
 \]
 where \(\gamma > 0\) and \(\eta \geq 2L_f\). Then
 \[
 |F(x^{k+1}) - F(x^*)| \leq \frac{1}{k(k + 1)} \left(\eta\|x^1 - x^*\|^2 + \frac{4\|\lambda^*\|^2}{\gamma}\right),
 \]
 \[
 \|A\bar{x}^{t+1} - b\| \leq \frac{1}{k(k + 1) \max(1, \|\lambda^*\|)} \left(\eta\|x^1 - x^*\|^2 + \frac{4\|\lambda^*\|^2}{\gamma}\right),
 \]
Sketch of proof

Let $\Phi(\bar{x}, x, \lambda) = F(\bar{x}) - F(x) - \langle \lambda, A\bar{x} - b \rangle$.

1. Fundamental inequality (for any λ):

 \[
 \Phi(\bar{x}^{k+1}, x^*, \lambda) - (1 - \alpha_k) \Phi(\bar{x}^k, x^*, \lambda)
 \leq -\frac{\alpha_k \eta_k}{2} \left[\|x^{k+1} - x^*\|^2 - \|x^k - x^*\|^2 + \|x^{k+1} - x^k\|^2 \right]
 + \frac{\alpha_k^2 L_f}{2} \|x^{k+1} - x^k\|^2
 + \frac{\alpha_k}{2\gamma_k} \left[\|\lambda^k - \lambda\|^2 - \|\lambda^{k+1} - \lambda\|^2 + \|\lambda^{k+1} - \lambda^k\|^2 \right]
 \]

2. $\alpha_k = \frac{2}{k+1}$, $\gamma_k = k\gamma$, $\beta_k \geq \frac{\gamma_k}{2}$, $\eta_k = \frac{n_k}{k}$ and multiply $k(k+1)$ to the above ineq.:

 \[
 k(k+1) \Phi(\bar{x}^{k+1}, x^*, \lambda) - k(k-1) \Phi(\bar{x}^k, x^*, \lambda)
 \leq -\eta \left[\|x^{k+1} - x^*\|^2 - \|x^k - x^*\|^2 \right] + \frac{1}{\gamma} \left[\|\lambda^k - \lambda\|^2 - \|\lambda^{k+1} - \lambda\|^2 \right].

3. Set $\lambda^1 = 0$ and sum the above inequality over k:

 \[
 \Phi(\bar{x}^{k+1}, x^*, \lambda) \leq \frac{1}{k(k+1)} \left(\eta \|x^1 - x^*\|^2 + \frac{1}{\gamma} \|\lambda\|^2 \right)

4. Take $\lambda = \max (1 + \|\lambda^*\|, 2\|\lambda^*\|) \frac{A\bar{x}^{k+1} - b}{\|A\bar{x}^{k+1} - b\|}$ and use the optimality condition

 $\Phi(\bar{x}, x^*, \lambda^*) \geq 0 \Rightarrow F(\bar{x}^{k+1}) - F(x^*) \geq -\|\lambda^*\| \cdot \|A\bar{x}^{k+1} - b\|$
Literature

- [He-Yuan ’10]: accelerated ALM to $O(1/k^2)$ for smooth problems
- [Kang et. al ’13]: accelerated ALM to $O(1/k^2)$ for nonsmooth problems
- [Huang-Ma-Goldfarb ’13]: accelerated linearized ALM (with linearization of augmented term) to $O(1/k^2)$ for strongly convex problems
Part II: accelerated linearized ADMM
Two-block structured problems

Variable is partitioned into two blocks, smooth part involves one block, and nonsmooth part is separable

\[
\begin{align*}
\min_{y,z} & \quad h(y) + f(z) + g(z), \\
\text{subject to} & \quad By + Cz = b
\end{align*}
\]

(LCP-2)

- \(f \) convex and Lipschitz differentiable
- \(g \) and \(h \) closed convex and simple

Examples:

- Total-variation regularized regression: \(\{ \min_{y,z} \lambda \|y\|_1 + f(z), \text{ s.t. } Dz = y \} \)
Alternating direction method of multipliers (ADMM)

At iteration k,

\[
y^{k+1} \leftarrow \arg \min_{y} h(y) - \langle \lambda^{k}, By \rangle + \frac{\beta}{2} \|By + Cz^{k} - b\|^2,
\]

\[
z^{k+1} \leftarrow \arg \min_{z} f(z) + g(z) - \langle \lambda^{k}, Cz \rangle + \frac{\beta}{2} \|By^{k+1} + Cz - b\|^2,
\]

\[
\lambda^{k+1} \leftarrow \lambda^{k} - \gamma(By^{k+1} + Cz^{k+1} - b)
\]

- $0 < \gamma < \frac{1+\sqrt{5}}{2} \beta$: convergence guaranteed [Glowinski-Marrocco’75]
- updating y, z alternatingly: easier than jointly update
 - but z-subproblem can still be difficult
Accelerated linearized ADMM

At iteration k,

$$y^{k+1} \leftarrow \arg \min_y h(y) - \langle \lambda^k, By \rangle + \frac{\beta_k}{2} \|By + Cz^k + -b\|^2,$$

$$z^{k+1} \leftarrow \arg \min_z \langle \nabla f(z^k) - C^\top \lambda^k + \beta_k C^\top r^{k+\frac{1}{2}}, z \rangle + g(z) + \frac{\eta_k}{2} \|z - z^k\|^2,$$

$$\lambda^{k+1} \leftarrow \lambda^k - \gamma_k (By^{k+1} + Cz^{k+1} - b)$$

where $r^{k+\frac{1}{2}} = By^{k+1} + Cz^{k} - b$.

- reduces to linearized ADMM if $\beta_k = \beta, \eta_k = \eta, \gamma_k = \gamma, \forall k$
 - convergence rate: $O(1/k)$ if $0 < \gamma \leq \beta$ and $\eta \geq L_f + \beta \|C\|^2$
- $O(1/k^2)$ if adaptive parameters and strong convexity on z (next two slides)
Accelerated convergence speed

Assumptions:

- Existence of a pair of primal-dual solution \((y^*, z^*, \lambda^*)\)
- \(\nabla f\) Lipschitz continuous: \(||\nabla f(\hat{z}) - \nabla f(\tilde{z})|| \leq L_f ||\hat{z} - \tilde{z}||\)
- \(f\) strongly convex with modulus \(\mu_f\) (not required for \(y\))

Convergence rate of order \(O(1/k^2)\)

- Set parameters as follows (with \(\gamma > 0\) and \(\gamma < \eta \leq \mu_f / 2\))
 \[
 \forall k: \beta_k = \gamma_k = (k + 1)\gamma, \quad \eta_k = (k + 1)\eta + L_f,
 \]

 Then
 \[
 \max \left(||z^k - z^*||^2, |F(\bar{y}^k, \bar{z}^k) - F^*|, ||B\bar{y}^k + C\bar{z}^k - b|| \right) \leq O(1/k^2),
 \]
 where \(F(y, z) = h(y) + f(z) + g(z)\) and \(F^* = F(y^*, z^*)\).
Sketch of proof

1. Fundamental inequality from optimality conditions of each iterate:

\[
F(y^{k+1}, z^{k+1}) - F(y, z) - \langle \lambda, By^{k+1} + Cz^{k+1} - b \rangle \\
\leq - \left(\frac{1}{\gamma_k} (\lambda^k - \lambda^{k+1}), \lambda - \lambda_k + \frac{\beta_k}{\gamma_k} (\lambda^k - \lambda^{k+1}) - \beta_k C(z^{k+1} - z^k) \right) \\
+ \frac{L_f}{2} \|z^{k+1} - z^k\|^2 - \frac{\mu_f}{2} \|z^k - z\|^2 - \eta_k \langle z^{k+1} - z, z^{k+1} - z^k \rangle,
\]

2. Plug in parameters and bound cross terms:

\[
F(y^{k+1}, z^{k+1}) - F(y^*, z^*) - \langle \lambda, By^{k+1} + Cz^{k+1} - b \rangle \\
+ \frac{1}{2} \left(\eta(k+1) \|z^{k+1} - z^*\|^2 + L_f \|z^{k+1} - z^*\|^2 \right) + \frac{1}{2\gamma(k+1)} \|\lambda - \lambda^{k+1}\|^2 \\
\leq \frac{1}{2} \left(\eta(k+1) \|z^k - z^*\|^2 + (L_f - \mu_f) \|z^k - z^*\|^2 \right) + \frac{1}{2\gamma(k+1)} \|\lambda - \lambda^k\|^2.
\]

3. Multiply \(k + k_0 \) (here \(k_0 \approx \frac{2L_f}{\mu_f} \)) and sum the inequality over \(k \):

\[
F(\bar{y}^{k+1}, \bar{z}^{k+1}) - F(y^*, z^*) - \langle \lambda, B\bar{y}^{k+1} + C\bar{z}^{k+1} - b \rangle \leq \frac{\phi(y^*, z^*, \lambda)}{k^2}
\]

4. Take a special \(\lambda \) and use KKT conditions
[Ouyang et. al’15]: \(O(L_f/k^2 + C_0/k) \) with only weak convexity

[Goldstein et. al’14]: \(O(1/k^2) \) with strong convexity on both \(y \) and \(z \)

[Chambolle-Pock’11, Chambolle-Pock’16, Dang-Lan’14, Bredies-Sun’16]: accelerated first-order methods on bilinear saddle-point problems

Open question: weakest conditions to have \(O(1/k^2) \)
Numerical experiments

(More results in paper)
Accelerated (linearized) ADMM

Tested problem: total-variation regularized image denoising

$$\min_{X,Y} \frac{1}{2} \|X - B\|_F^2 + \mu \|Y\|_1, \quad \text{subject to } DX = Y.$$ \hfill \text{(TVDN)}

- B observed noisy Cameraman image, and D finite difference operator

Compared methods:

- original ADMM
- accelerated ADMM
- linearized ADMM
- accelerated linearized ADMM
- accelerated Chambolle-Pock
Performance of compared methods

- Accelerated (linearized) ADMM significantly better than nonaccelerated one
- (accelerated) ADMM faster than (accelerated) linearized ADMM regarding iteration number (but the latter takes less time)
Conclusions

- accelerated linearized ALM to $O(1/k^2)$ from $O(1/k)$ with merely convexity
- accelerated (linearized) ADMM to $O(1/k^2)$ from $O(1/k)$ with strong convexity on one block variable
- performed numerical experiments

