
FIRST-ORDER METHODS FOR PROBLEMS WITH O(1) FUNCTIONAL
CONSTRAINTS CAN HAVE ALMOST THE SAME CONVERGENCE RATE AS FOR

UNCONSTRAINED PROBLEMS

YANGYANG XU∗

Abstract. First-order methods (FOMs) have recently been applied and analyzed for solving problems with complicated
functional constraints. Existing works show that FOMs for functional constrained problems have lower-order convergence
rates than those for unconstrained problems. In particular, an FOM for a smooth strongly-convex problem can have linear
convergence, while it can only converge sublinearly for a constrained problem if the projection onto the constraint set is
prohibited. In this paper, we point out that the slower convergence is caused by the large number of functional constraints but
not the constraints themselves. When there are only m = O(1) functional constraints, we show that an FOM can have almost
the same convergence rate as that for solving an unconstrained problem, even without the projection onto the feasible set. In
addition, given an ε > 0, we show that a complexity result that is better than a lower bound can be obtained, if there are only

m = o(ε−
1
2) functional constraints. Our result is surprising but does not contradict to the existing lower complexity bound,

because we focus on a specific subclass of problems. Experimental results on quadratically-constrained quadratic programs
demonstrate our theory.

Keywords: first-order method, cutting-plane method, nonlinearly constrained problem, iteration complexity

Mathematics Subject Classification: 65K05, 68Q25, 90C30, 90C60

1. Introduction. In this paper, we consider the constrained convex programming

(1.1) min
x∈Rn

F (x) := f(x) + h(x), s.t. g(x) := [g1(x), . . . , gm(x)] ≤ 0,

where f is a differentiable strongly-convex function with a Lipschitz continuous gradient, h is a simple closed
convex function, and each gi is convex differentiable and has a Lipschitz continuous gradient.

For a smooth strongly-convex linearly-constrained problem minx{f(x), s.t. Ax = b}, [32] gives a lower
complexity bound O(1√

ε
) of first-order methods (FOMs) to produce an ε-optimal solution, if A can be

inquired only by the matrix-vector multiplication A(·) and A>(·). Notice {x : Ax = b} = {x : Ax ≤
b,−Ax ≤ −b}. In addition, if ∇f(x) + A>y = 0, then ∇f(x) + A>y+ −A>y− = 0, where y+ ≥ 0 and
y− ≥ 0 denote the positive and negative parts of y. Hence, if the linear-equality constrained problem has a
KKT point, then so does the equivalent linear-inequality constrained problem. Therefore, the lower bound
in [32] also applies to the inequality constrained problem (1.1), if g can be accessed only through its function
value and derivative. However, for the special case of g ≡ 0 or m = 0, an accelerated proximal gradient
method [22,31] can achieve a complexity result O(

√
κ| log ε|) to produce an ε-optimal solution of (1.1), when

f is strongly convex. Here, κ denotes the condition number.
The worst-case instance constructed in [32] relies on the condition that m is in the same or higher order

of 1√
ε
. For the case with m = o(1√

ε
), the lower bound O(1√

ε
) may not hold any more. Examples of (1.1)

with small m include the Neyman-Pearson classification problem [33], fairness-constrained classification [43],
and the risk-constrained portfolio optimization [10]. Therefore, we pose the following question while solving
a strongly-convex problem in the form of (1.1):

Given ε > 0, can an FOM achieve a better complexity result than O(1√
ε
) to produce an ε-optimal

solution of (1.1) when m = o(1√
ε
), or even achieve Õ(

√
κ) when m = O(1)?

∗xuy21@rpi.edu, Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180

1

xuy21@rpi.edu

Here, an FOM for (1.1) only uses the function value and derivative information of f and g and also the
proximal mapping of h and its multiples, and Õ suppresses a polynomial of | log ε|. We will give an affirmative
answer to the above question.

1.1. Algorithmic framework. The FOM that we will design and analyze is based on the inexact
augmented Lagrangian method (iALM). The classic AL function of (1.1) is:

(1.2) Lβ(x, z) = F (x) + β
2

∥∥∥[g(x) + z
β]+

∥∥∥2

− ‖z‖
2

2β ,

where z is the multiplier vector, and [a]+ takes the compoment-wise positive part of a vector a. The
pseudocode of a first-order iALM is shown in Algorithm 1. Notice that Lβ is strongly convex about x and
concave about z. Hence, we can directly apply the accelerated proximal gradients in [22, 31] to solve each
x-subproblem. However, that way can only give a complexity result of O(1√

ε
) as shown in [40], regardless of

the value of m. To have a better overall complexity, we will design a new cutting-plane based FOM to solve
each x-subproblem by utilizing the condition m = O(1) or m = o(1√

ε
).

Algorithm 1: First-order inexact augmented Lagrangian method for (1.1)

1 Initialization: choose x0, z0, and β0 > 0
2 for k = 0, 1, . . . do

3 Apply a first-order method to find xk+1 as an approximate solution of minx Lβk (x, zk).

4 Update z by zk+1 = [zk + βkg(xk+1)]+.
5 Choose βk+1 ≥ βk.
6 if a stopping condition is satisfied then

7 Output (xk+1, zk+1) and stop

1.2. Related works. We briefly mention some existing works that also study the complexity of FOMs
for solving functional constrained problems.

By using the ordinary Lagrangian function, [27, 28] analyze a dual subgradient method for general
convex problems. The method needs O(ε−2) subgradient evaluations to produce an ε-optimal solution (see
the definition in Eq. (1.6) below). For a smooth problem, [26] studies the complexity of an inexact dual
gradient (IDG) method. Suppose that an optimal FOM is applied to each outer-subproblem of IDG. Then

to produce an ε-optimal solution, IDG needs O(ε−
3
2) gradient evaluations when the problem is convex, and

the result can be improved to O(ε−
1
2 | log ε|) when the problem is strongly convex. For convex problems, the

primal-dual FOM proposed in [42] achieves an O(ε−1) complexity result to produce an ε-optimal solution,
and the same-order complexity result has also been established in [39]. Based on a previous work [15] for
affinely constrained problems, [23] gives a modified first-order iALM for solving convex cone programs. The
overall complexity of the modified method is O(ε−1| log ε|) to produce an ε-KKT point (see Definition 1.1
below). A similar result has also been shown in [3] for convex conic programs. A proximal iALM is analyzed
in [16]. By a linearly-convergent first-order subroutine for primal subproblems, [16] shows that O(ε−1) calls to

the subroutine are needed for convex problems and O(ε−
1
2) for strongly convex problems, to achieve either an

ε-optimal or an ε-KKT point. In terms of function value and derivative evaluations, the complexity result is
O(ε−1| log ε|) for the convex case and O(ε−

1
2 | log ε|) for the strongly-convex case. Complexity results of FOMs

for nonconvex problems with functional constraints have also been established, e.g., [6, 7, 14, 17–19, 24, 35].

2

To produce an ε-KKT point, the best-known result is Õ(ε−
5
2) when the constraints are convex [17, 19] and

Õ(ε−3) when the constraints are nonconvex and satisfy a certain regularity condition [19].
On solving general nonlinear constrained problems, FOMs have also been proposed under the framework

of the level-set method [2, 20, 21]. For convex problems, the level-set based FOMs can also achieve an

O(ε−1) complexity result to produce an ε-optimal solution. However, to obtain Õ(ε−
1
2), they require strong

convexity of both the objective and the constraint functions. Nesterov gives a level-set-type FOM in [30]
for functional constrained problems. For strongly-convex problems, the method can produce an ε-optimal
solution by O(

√
κ| log ε| log κ) first-order oracles [30, Eqn. 2.3.26], where κ is the condition number. This

oracle complexity result differs from a lower-bound result for unconstrained problems only by a factor of
log κ. However, [30] requires strong convexity for the objective function and all the constraint functions. In
contrast, we will only need strong convexity for the objective, while the constraint functions can be merely
convex. In addition, the method in [30] assumes exact solutions to a sequence of quadratically constrained
quadratic programs.

Under the condition of strong duality, (1.1) can be equivalently formulated as a non-bilinear saddle-
point (SP) problem. In this case, one can apply any FOM that is designed for solving non-bilinear SP
problems. The work [12] generalizes the primal-dual method proposed in [8] from the bilinear SP case to the
non-bilinear case. If the underlying SP problem is convex-concave, [12] establishes an O(ε−1) complexity
result to guarantee ε-duality gap. When the problem is strongly-convex-linear, the result can be improved
to O(ε−

1
2). Notice that both results apply to the equivalent ordinary-Lagrangian-based SP problem of

(1.1). By the smoothing technique, [13] gives an FOM (with both deterministic and stochastic versions)
for solving non-bilinear SP problems. To ensure an ε-duality gap of a strongly-convex-concave problem, the
method requires Õ(ε−

1
2) primal first-order oracles and Õ(ε−1) dual first-order oracles. While applied to the

functional constrained problem (1.1), the method in [13] can obtain an ε-optimal solution by O(ε−
1
2 | log ε|)

evaluations on f , ∇f , g, and Jg. FOMs for solving the more general variational inequality (VI) problem can
also be applied to (1.1), such as the mirror-prox method in [29], the hybrid extragradient method in [25], and
the accelerated method in [9]. All of the three methods can have an O(ε−1) complexity result by assuming
smoothness and/or monotonicity of the involved operator.

1.3. Contributions. On solving a functional constrained problem with a strongly convex objective and
convex constraint functions, none of the existing works about FOMs (such as those we mentioned previously)

could obtain a complexity result better than Õ(ε−
1
2). Without specifying the regime of m, the task is

impossible. We show that when m = O(1) in (1.1), an FOM can achieve almost the same-order complexity
result (with a difference of at most a polynomial of | log ε|) as for solving an unconstrained problem. When

m = o(ε−
1
2), we show that a complexity result better than Õ(ε−

1
2) can be obtained. The key step in the

design of our algorithm is to formulate each primal subproblem into an equivalent SP problem. The SP
formulation is strongly concave about the dual variable, and the strong concavity enables the generation
of a cutting plane while searching for an approximate dual solution of the SP problem. Since there are m
dual variables, we can apply a cutting-plane method to efficiently find an approximate dual solution when
m = O(1) or m = o(ε−

1
2). In addition, we extend the idea of a cutting-plane based FOM to the convex and

nonconvex cases. For these two cases, we show that an FOM for problems with O(1) functional constraints
can also achieve almost the same-order complexity result as for solving unconstrained problems.

1.4. Assumptions and notation. Throughout our analysis for strongly-convex problems, we make
the following assumptions.

Assumption 1 (smoothness). f is Lf -smooth, i.e., ∇f is Lf -Lipschitz continuous. In addition, each
gi is smooth, and the Jacobian matrix Jg = [∇g>1 ; . . . ;∇g>m] is Lg-Lipschitz continuous.

3

Assumption 2 (bounded domain and convexity). The domain of h is bounded with a diameter Dh =
maxx,y∈dom(h) ‖x− y‖ <∞. The functions h and {gi} are all convex.

The above two assumptions imply the boundedness of g and Jg on dom(h). We use G and Bg respectively
for their bounds, namely,

(1.3) G = max
x∈dom(h)

‖g(x)‖, Bg = max
x∈dom(h)

‖Jg(x)‖.

Assumption 3 (strong convexity). The smooth function f is µ-strongly convex with µ > 0.

Assumption 4 (strong duality). There is a primal-dual solution (x∗, z∗) satisfying the KKT conditions
of (1.1), i.e., 0 ∈ ∂F (x∗) + Jg(x∗)>z∗, z∗ ≥ 0, g(x∗) ≤ 0, g(x∗)>z∗ = 0.

When Assumption 4 holds, it is easy to have (cf. [38, Eqn. 2.4])

(1.4) F (x)− F (x∗) + 〈z∗,g(x)〉 ≥ 0, ∀x ∈ dom(h).

Notation. For a real number a, we use dae to denote the smallest integer that is no less than a and
dae+ the smallest nonnegative integer that is no less than a. Bδ(x) denotes a ball with radius δ and center
x. If x = 0, we simply use Bδ. We define B+

δ as the intersection of Bδ with the nonnegative orthant,
so in the n-dimensional space, B+

δ = Bδ ∩ Rn+. We use Vm(δ) for the volume of Bδ in the m-dimensional
space. [n] denotes the set {1, . . . , n}. Given a closed convex set X ⊆ Rn and a point x ∈ Rn, we define
dist(x, X) = miny∈X ‖y− x‖. For any vector x, Diag(x) denotes a diagonal matrix with x on the diagonal,
and for any square matrix A, diag(A) is a vector that takes the diagonal of A. We use O, Θ, and o with
standard meanings, while in the complexity result statement, Õ has a similar meaning as O but suppresses
a polynomial of | log ε| for a given error tolerance ε > 0.

Definition 1.1 (ε-KKT point). Given ε > 0, a point x̄ ∈ dom(h) is called an ε-KKT point of (1.1) if
there is z̄ ≥ 0 such that

(1.5) dist
(
0, ∂xL0(x̄, z̄)

)
≤ ε, ‖[g(x̄)]+‖ ≤ ε,

m∑
i=1

|z̄igi(x̄)| ≤ ε,

where L0(x, z) = F (x) + z>g(x) is the ordinary Lagrangian function of (1.1). By the convexity of F and
each gi, and also Assumption 4, one can easily show that an ε-KKT point of (1.1) must be an O(ε)-optimal
solution, where we call a point x̄ ∈ dom(h) as an ε-optimal solution of (1.1) if

(1.6)
∣∣F (x̄)− F (x∗)

∣∣ ≤ ε, ‖[g(x̄)]+‖ ≤ ε.

1.5. Outline. The rest of the paper is organized as follows. In section 2, we review an adaptive
accelerated proximal gradient method (APG) and give the convergence rate of the iALM. In section 3, we
design new FOMs (that are better than directly applying the APG) for solving primal subproblems in the
iALM. Overall complexity results are shown in section 4. Extensions to convex and nonconvex cases are given
in section 5. Numerical experiments are conducted in section 6 to demonstrate our theory, and section 7
concludes the paper.

2. An optimal FOM and convergence rate of iALM. In this section, we give an optimal FOM
with line search that will be used as a subroutine in our algorithm. Also, we establish the convergence rate
of the iALM to produce an approximate KKT point.

4

2.1. An optimal FOM for strongly-convex composite problems. Consider the problem

(2.1) minimize
x∈Rn

P (x) := ψ(x) + r(x),

where ψ is a differentiable µψ-strongly convex function with Lψ-Lipschitz continuous gradient, and r is
a closed convex function. Several optimal FOMs have been given in the literature for solving (2.1), e.g.,
in [22,31]. In this paper, we choose the APG with line search in [22], and we rewrite it in Algorithm 2 with
a few modified steps for our purpose to produce near-stationary points. One can also use the APG in [31].

Algorithm 2: An optimal FOM with line search for (2.1): x̂ = APG(ψ, r, µψ, Lmin, ε̄, γ1, γ2)

1 Input: minimum Lipschitz Lmin > 0, increase rate γ1 > 1, decrease rate γ2 ≥ 1, and error tolerance ε̄ > 0.

2 Prestep: choose any ỹ = y0 ∈ dom(r) and let L̃ = Lmin/γ1

3 repeat

4 L̃← γ1L̃ and let x̃ = arg minx〈∇ψ(ỹ),x〉+ L̃
2
‖x− ỹ‖2 + r(x)

5 until ψ(x̃) ≤ ψ(ỹ) + 〈∇ψ(ỹ), x̃− ỹ〉+ L̃
2
‖x̃− ỹ‖2

6 Initialization: let x−1 = x0 = x̃, L0 = max{Lmin, L̃/γ2}, and α−1 = 1
7 for k = 0, 1, . . . do

8 L̃← Lk/γ1

9 repeat

10 L̃← γ1L̃, αk ←
√
µψ/L̃, and ỹ← xk +

αk(1−αk−1)

αk−1(1+αk)
(xk − xk−1)

11 let x̃ = arg minx〈∇ψ(ỹ),x〉+ L̃
2
‖x− ỹ‖2 + r(x)

12 until ψ(x̃) ≤ ψ(ỹ) + 〈∇ψ(ỹ), x̃− ỹ〉+ L̃
2
‖x̃− ỹ‖2

13 L̂← L̃/γ1;
14 repeat

15 increase L̂← γ1L̂;

16 let x̂ = arg minx〈∇ψ(x̃),x〉+ L̂
2
‖x− x̃‖2 + r(x); . modified step to guarantee near-stationarity at x̂

17 until ψ(x̂) ≤ ψ(x̃) + 〈∇ψ(x̃), x̂− x̃〉+ L̂
2
‖x̂− x̃‖2

18 set xk+1 = x̃, x̂k+1 = x̂, and Lk+1 = max{Lmin, L̃/γ2};
19 if dist

(
0, ∂P (x̂)

)
≤ ε̄ then

20 return x̂ and stop.

The results in the next theorem are from Theorem 1 of [22].
Theorem 2.1. The generated sequence {xk}k≥0 by Algorithm 2 satisfies

(2.2) P (xk+1)− P (x∗) ≤
(

1−
√

µψ
γ1Lψ

)k+1 (
P (x0)− P (x∗) +

µψ
2
‖x0 − x∗‖2

)
, ∀ k ≥ 0,

where x∗ is the optimal solution of (2.1).
By the above theorem, we can easily bound the distance of x̂k to stationarity for each k.
Theorem 2.2. The generated sequence {x̂k}k≥0 satisfies

dist
(
0, ∂P (x̂k+1)

)
≤
(√

γ1Lψ +
Lψ√
Lmin

)√
2(P (x0)− P (x∗)) + µψ‖x0 − x∗‖2

(
1−

√
µψ
γ1Lψ

) k+1
2

, ∀ k ≥ 0.

5

Proof. First notice that if L̂ ≥ Lψ, it must hold ψ(x̂) ≤ ψ(x̃) + 〈∇ψ(x̃), x̂− x̃〉+ L̂
2 ‖x̂− x̃‖2, and when this

inequality holds, we have (cf. [41, Lemma 2.1]) P (x̃)−P (x̂) ≥ L̂
2 ‖x̂−x̃‖2. Since P (x̃)−P (x̂) ≤ P (x̃)−P (x∗),

we have L̂
2 ‖x̂− x̃‖2 ≤ P (x̃)− P (x∗), which together with the fact L̂ ≥ Lmin implies

(2.3) L̂2

2 ‖x̂− x̃‖2 ≤ L̂
(
P (x̃)− P (x∗)

)
, ‖x̂− x̃‖2 ≤ 2

Lmin

(
P (x̃)− P (x∗)

)
.

In addition, from the optimality condition of x̂, it follows 0 ∈ ∇ψ(x̃) + L̂(x̂− x̃) + ∂r(x̂), and thus

(2.4) dist(0, ∂P (x̂)) ≤ ‖∇ψ(x̂)−∇ψ(x̃)‖+ L̂‖x̂− x̃‖ ≤ (Lψ + L̂)‖x̂− x̃‖.

By (2.3) and (2.4), we have

dist(0, ∂P (x̂)) ≤ (Lψ + L̂)‖x̂− x̃‖ ≤
√

2(P (x̃)− P (x∗))
(√

L̂+
Lψ√
Lmin

)
.

Therefore, the desired result follows from (2.2), the fact L̂ ≤ γ1Lψ, and the above inequality with x̂ = x̂k+1

and x̃ = xk+1. �

From [4, Theorem 3.1], we have

(2.5) P (x0)− P (x∗) ≤ γ1Lψ‖y0−x∗‖2
2 .

Hence, we can obtain the following complexity result by Theorem 2.2 together with (2.5).
Corollary 2.3. Assume that dom(r) is bounded with a diameter Dr = maxx1,x2∈dom(r) ‖x1 − x2‖.

Given ε̄ > 0, γ1 > 1, γ2 ≥ 1 and Lmin > 0, Algorithm 2 needs at most T evaluations on the objective value
of ψ and the gradient ∇ψ to produce x̂ such that dist(0, ∂P (x̂)) ≤ ε̄, where

T =
(

1 + dlogγ1

Lψ
Lmin
e+
)(

1 + 2
⌈
2
√

γ1Lψ
µψ

log
(
Dr
ε̄

(√
γ1Lψ +

Lψ√
Lmin

)√
2γ1Lψ + µψ

)⌉
+

)
.

Proof. Since dom(r) has a diameter Dr, we have from Theorem 2.2 and (2.5) that

dist
(
0, ∂P (x̂k+1)

)
≤ Dr

(√
γ1Lψ +

Lψ√
Lmin

)√
2γ1Lψ + µψ

(
1−

√
µψ
γ1Lψ

) k+1
2

, ∀ k ≥ 0.

Hence, if k + 1 ≥ K, then dist
(
0, ∂P (x̂k+1)

)
≤ ε̄, where

K =

2 log

(
Dr
ε̄

(√
γ1Lψ+

Lψ√
Lmin

)√
2γ1Lψ+µψ

)
log(1−

√
µψ
γ1Lψ

)−1

+

,

namely, after at most K iterations, the algorithm will produce a point x̂ satisfying dist(0, ∂P (x̂)) ≤ ε̄.
Notice that the conditions in Lines 5, 11, and 17 of Algorithm 2 will hold if L̃ ≥ Lψ and L̂ ≥ Lψ. Hence,

every iteration will evaluate the objective value of ψ and the gradient ∇ψ at most 2(1+dlogγ1

Lψ
Lmin
e+) times.

Now using the fact log(1−a)−1 ≥ a, ∀ 0 < a < 1, we obtain the desired result by also counting the objective
and gradient evaluations to obtain x0. �

6

2.2. Convergence rate of iALM. The next lemma is from [40, equation 3.20] and the proof of [40,
Lemma 7].

Lemma 2.4. Let {(xk, zk)} be generated from Algorithm 1 with z0 = 0. Suppose

(2.6) Lβk(xk+1, zk) ≤ min
x
Lβk(x, zk) + ek, ∀ k = 0, 1, . . . ,

for an error sequence {ek}. Then

(2.7) ‖zk‖2 ≤ 4‖z∗‖2 + 4
∑k−1
t=0 βtet, and ‖zk‖ ≤ 2‖z∗‖+

√
2
∑k−1
t=0 βtet, ∀ k ≥ 1.

By this lemma and also the strong convexity of F , we can show the following result.
Lemma 2.5. Let {(xk, zk)} be generated from Algorithm 1 with z0 = 0. If dist

(
0, ∂xLβk(xk+1, zk)

)
≤

εk, ∀ k ≥ 0 for a sequence {εk}, then

(2.8) ‖zk‖2 ≤ 4‖z∗‖2 + 4
∑k−1
t=0 βt

ε2t
µ , and ‖zk‖ ≤ 2‖z∗‖+

√
2
∑k−1
t=0 βt

ε2t
µ , ∀ k ≥ 1.

Proof. Let xk+1
∗ be the minimizer of Lβk(x, zk) about x. Then 0 ∈ ∂xLβk(xk+1

∗ , zk). Also, it follows from
dist

(
0, ∂xLβk(xk+1, zk)

)
≤ εk that there is v ∈ ∂xLβk(xk+1, zk) and ‖v‖ ≤ εk. Since F is µ-strongly convex,

Lβk(x, zk) is also µ-strongly convex about x. Then we have 〈v,xk+1 − xk+1
∗ 〉 ≥ µ‖xk+1 − xk+1

∗ ‖2, which

together with the Cauchy-Schwarz inequality gives ‖xk+1 − xk+1
∗ ‖ ≤ ‖v‖

µ ≤ εk
µ . Now by the convexity of

Lβk(·, zk), it holds Lβk(xk+1, zk)−Lβk(xk+1
∗ , zk) ≤ 〈v,xk+1−xk+1

∗ 〉 ≤ ε2k
µ , and thus we have that (2.6) holds

with et =
ε2t
µ . Therefore, (2.8) follows from (2.7). �

Theorem 2.6 (convergence rate of iALM). Let {(xk, zk)} be generated from Algorithm 1 with z0 = 0.
Suppose βk = β0σ

k, ∀ k ≥ 0 for some σ > 1 and β0 > 0, and dist
(
0, ∂xLβk(xk+1, zk)

)
≤ ε̄, ∀ k ≥ 0 for a

positive number ε̄. Then ∥∥[g(xk+1)]+
∥∥ ≤ 4‖z∗‖

β0σk
+

ε̄(
√
σ+1)

√
2

µ(σ−1)√
β0σk

,(2.9) ∑m
i=1

∣∣zk+1
i gi(x

k+1)
∣∣ ≤ 9‖z∗‖2

2β0σk
+ ε̄2(8σ+1)

2µ(σ−1) .(2.10)

Proof. From the update of z, it follows that gi(x
k+1) ≤ zk+1

i −zki
βk

for each i ∈ [m], and thus by (2.8), we have

∥∥[g(xk+1)]+
∥∥ ≤ ‖zk+1−zk‖

βk
≤ ‖z

k+1‖+‖zk‖
βk

≤
4‖z∗‖+

√
2
∑k−1
t=0 βt

ε2t
µ +

√
2
∑k
t=0 βt

ε2t
µ

βk
.

Plugging into the above inequality εt = ε̄, ∀ t ≥ 0 and βk = β0σ
k, we obtain the inequality in (2.9).

Furthermore, for each i ∈ [m], we have |zk+1
i gi(x

k+1)| ≤ 1
βk
|zk+1
i (zk+1

i − zki)|. Notice that zki and

zk+1
i are both nonnegative. If zk+1

i ≥ zki , then it is obvious to have |zk+1
i (zk+1

i − zki)| ≤ (zk+1
i)2, and if

zk+1
i < zki , it holds |zk+1

i (zk+1
i − zki)| = −(zk+1

i)2 + zki z
k+1
i ≤ (zk+1

i)2 +
(zki)2

8 by the Young’s inequality.

Hence, |zk+1
i gi(x

k+1)| ≤ 1
βk

((zk+1
i)2 +

(zki)2

8), and thus
∑m
i=1

∣∣zk+1
i gi(x

k+1)
∣∣ ≤ 1

βk

(
‖zk+1‖2 + ‖zk‖2

8

)
. Now

we obtain the result in (2.10) by plugging the first inequality in (2.8). �

7

We make a few remarks here. Given ε > 0, choose ε̄ > 0 such that ε̄2(8σ+1)
2µ(σ−1) < ε in Theorem 2.6. Notice

that ∂xLβk(xk+1, zk) = ∂xL0(xk+1, zk+1). Hence, from (2.9) and (2.10), it follows that to ensure xk+1 to be
an ε-KKT point, we need β0σ

k = Θ(1
ε) and solve k = Θ

(
logσ

1
β0ε

)
x-subproblems. Since the smooth part of

Lβk(·, zk) has Θ(βk)-Lipschitz continuous gradient, it needs O(
√

βk
µ) proximal gradient steps if we directly

apply Algorithm 2. This way, we can guarantee an ε-KKT point with a total complexity O(
√

κ
ε | log ε|),

where κ denotes the condition number in some sense. This complexity result has been established in a few

existing works, e.g., [16, 23]. It is worse by an order of
√

1
ε than the complexity result in Corollary 2.3 for

the unconstrained case. Generally, we cannot improve it any more because the result matches with the lower
bound given in [32].

In the rest of the paper, we show that in some special cases, a better complexity can be obtained. When
m = O(1), we show that we can achieve a complexity result O(

√
κ| log ε|3), which is in almost the same order

as the optimal result for the unconstrained case. For a general m, we can achieve O
(
m
√
κ| log ε|2(logm +

| log ε|)
)
, which is better than O(

√
κ
ε | log ε|) in the regime of m = o(

√
1
ε) by ignoring the logarithmic terms.

3. Better first-order methods for x-subproblems. When m is small in (1.1), we do not directly
apply Algorithm 2 to solve the x-subproblem minx Lβk(x, zk) in Algorithm 1. Instead, we design new and
better FOMs that use Algorithm 2 as a subroutine in the framework of a cutting-plane method. Our key
idea is to reformulate the x-subproblem into a strongly-convex-strongly-concave saddle-point problem, which
has a unique primal-dual solution. For the saddle-point formulation, we first find a sufficient-accurate dual
solution by a cutting-plane based FOM. Then we find a sufficient-accurate primal solution based on the
obtained approximate dual solution.

Below, we give more precise description on how to design better FOMs. Given z ≥ 0, let

θ(x) = g(x) + z
β .

From (1.3) and the Mean-Value Theorem, it follows that θ is Bg-Lipschitz continuous, namely,

(3.1) ‖θ(x1)− θ(x2)‖ ≤ Bg‖x1 − x2‖, ∀x1,x2.

With θ, we can rewrite the problem minx Lβ(x, z) into

(3.2) minimize
x∈Rn

φ(x) := F (x) + β
2 ‖[θ(x)]+‖2.

Notice that 1
2‖[θ(x)]+‖2 = maxy≥0

{
y>θ(x)− 1

2‖y‖
2
}

and y = [θ(x)]+ reaches the maximum. We re-write
(3.2) into

(3.3) min
x∈Rn

max
y≥0

Φ(x,y) := F (x) + β
(
y>θ(x)− 1

2‖y‖
2
)
.

Define

(3.4) d(y) = min
x∈Rn

Φ(x,y), and ȳ = arg max
y≥0

d(y).

Notice that d is β-strongly concave, so ȳ is the unique maximizer of d. Also, for a given y ≥ 0, define x(y)
as the unique minimizer of Φ(·,y), i.e.,

(3.5) x(y) = arg min
x

Φ(x,y).

8

In our algorithm design, we first find an approximate solution ŷ of maxy≥0 d(y) and then find an
approximate solution x̂ of minx Φ(x, ŷ). By controlling the approximation errors, we can guarantee x̂ to be
a near-stationary point of φ. On finding ŷ, we use a cutting-plane method. Since d is strongly concave, a
cutting plane can be generated at a query point y ≥ 0, though we can only have an estimate of ∇d(y) by
approximately solving minx Φ(x,y). It is unclear whether the same idea works if we directly play with the
augmented (or ordinary) Lagrangian dual function because it is not strongly concave.

3.1. Preparatory lemmas. We first establish a few lemmas. The next lemma indicates that the
complexity of solving minx Φ(x,y) by the APG can be independent of β, if ‖y‖ is in the same order of ‖ȳ‖.
This fact is the key for us to design a better FOM for solving ALM subproblems.

Lemma 3.1. Suppose x̄ is the minimizer of φ in (3.2). Then ȳ = [θ(x̄)]+ is the solution of maxy≥0 d(y),
and (x̄, ȳ) is the saddle point of Φ. In addition, let (x∗, z∗) be the point in Assumption 4. Then

(3.6) ‖ȳ‖ = ‖[θ(x̄)]+‖ ≤ 2‖z∗‖+‖z‖
β .

Proof. It is easy to see that ȳ = [θ(x̄)]+ is the solution of maxy≥0 d(y) and (x̄, ȳ) is a saddle point of Φ;
cf. [34, Corollary 37.3.2]. We only need to show (3.6). Since x̄ is the minimizer of φ, it holds

F (x̄) + β
2 ‖[θ(x̄)]+‖2 ≤ F (x∗) + β

2 ‖[θ(x∗)]+‖2 = F (x∗) + β
2

∥∥∥[g(x∗) + z
β

]
+

∥∥∥2

≤ F (x∗) + ‖z‖2
2β ,

where the last inequality holds because g(x∗) ≤ 0 and z ≥ 0. By the above inequality and (1.4), we have

β
2 ‖[θ(x̄)]+‖2 ≤ ‖z‖

2

2β + 〈z∗,g(x̄)〉 ≤ ‖z‖
2

2β + 〈z∗,θ(x̄)〉 ≤ ‖z‖
2

2β + ‖z∗‖ · ‖[θ(x̄)]+‖,

which implies the inequality in (3.6). �

Our cutting-plane based FOM for solving maxy≥0 d(y) needs a sufficiently accurate approximation of
∇d(y) at any query point y. We first give the formula of ∇d(y) in Lemma 3.2 and then provide a way to
approximate it with a desired accuracy in Lemma 3.3.

Lemma 3.2. For any y ≥ 0, it holds that

(3.7) ∇d(y) = β
(
θ(x(y))− y

)
,

where x(y) is defined in (3.5). In addition, the following two inequalities hold

β
〈
y1 − y2,θ(x(y1))− θ(x(y2))

〉
≤ −µ‖x(y1)− x(y2)‖2, ∀y1,y2 ≥ 0,(3.8)

‖x(y1)− x(y2)‖ ≤ βBg
µ ‖y1 − y2‖, ∀y1,y2 ≥ 0.(3.9)

Proof. The result in (3.7) follows from the Danskin Theorem (cf. [5]). We only need to show (3.8) and (3.9).
For i = 1, 2, denote xi = x(yi). From the definition of x(y) and the µ-strong convexity of F , it holds

F (x1) + βy>1 θ(x1) ≤ F (x2) + βy>1 θ(x2)− µ
2 ‖x1 − x2‖2,

F (x2) + βy>2 θ(x2) ≤ F (x1) + βy>2 θ(x1)− µ
2 ‖x1 − x2‖2.

Adding the above two inequalities gives the result in (3.8). Now using the Bg-Lipschitz continuity of θ, we
have (3.9) from (3.8) and complete the proof. �

9

Lemma 3.3 (approximate dual gradient). Given ŷ ≥ 0 and δ ≥ 0, let x̂ be an approximate minimizer
of Φ(·, ŷ) such that dist

(
0, ∂xΦ(x̂, ŷ)

)
≤ δ. Then

‖θ(x̂)− θ(x(ŷ))‖ ≤ Bg δµ ,
∥∥β(θ(x̂)− ŷ

)
−∇d(ŷ)

∥∥ ≤ βBg δµ .
Hence, β

(
θ(x̂)− ŷ

)
is a good approximation of ∇d(ŷ) when δ is small.

Proof. From the µ-strong convexity of F , it follows that for each y ≥ 0, Φ(·,y) is µ-strongly convex, and thus
µ‖x̂−x(ŷ)‖ ≤ dist

(
0, ∂xΦ(x̂, ŷ)

)
≤ δ, which gives ‖x̂−x(ŷ)‖ ≤ δ

µ . Hence, by the Bg-Lipschitz continuity of θ,

we have ‖θ(x̂)−θ(x(ŷ))‖ ≤ Bg δµ , and thus from (3.7),
∥∥β(θ(x̂)− ŷ

)
−∇d(ŷ)

∥∥ = β‖θ(x̂)−θ(x(ŷ))‖ ≤ βBg δµ .
This completes the proof. �

In order to have a verifiable stopping condition, we will compute the violation of first-order optimality
conditions. The following two lemmas quantify the accuracy levels of solving ŷ ≈ arg maxy≥0 d(y) and
x̂ ≈ arg minx Φ(x, ŷ) in order to find a desired-accurate stationary point of (3.2). These results will be used
to estimate the worst-case complexity result.

Lemma 3.4. Given ŷ ≥ 0, it holds

dist
(
0, ∂φ(x̂)

)
≤ dist

(
0, ∂xΦ(x̂, ŷ)

)
+ β‖Jθ(x̂)‖ · ‖[θ(x̂)]+ − ŷ‖, ∀ x̂ ∈ dom(h).

Proof. It is easy to have ∂φ(x̂) = ∂xΦ(x̂, ŷ) + βJ>θ (x̂)([θ(x̂)]+− ŷ). The desired result now follows from the
triangle inequality and the Cauchy-Schwarz inequality. �

Lemma 3.5. Given ε̄ > 0, if ŷ ≥ 0 is an approximate solution of maxy≥0 d(y) such that ‖[θ(x(ŷ))]+ −
ŷ‖ ≤ ε̄

3βBg
, and x̂ is an approximate minimizer of Φ(·, ŷ) such that dist

(
0, ∂xΦ(x̂, ŷ)

)
≤ ε̄

3 min{1, µ
βB2

g
},

then dist
(
0, ∂φ(x̂)

)
≤ ε̄.

Proof. Since dist
(
0, ∂xΦ(x̂, ŷ)

)
≤ ε̄µ

3βB2
g
, we use Lemma 3.3 with δ = ε̄µ

3βB2
g

to have ‖θ(x̂)−θ(x(ŷ))‖ ≤ ε̄
3βBg

.

In addition, from the nonexpansiveness of [·]+, it follows that ‖[θ(x̂)]+ − [θ(x(ŷ))]+‖ ≤ ε̄
3βBg

. Because

‖[θ(x(ŷ))]+ − ŷ‖ ≤ ε̄
3βBg

, we have from the triangle inequality that ‖[θ(x̂)]+ − ŷ‖ ≤ 2ε̄
3βBg

. The desired

result now follows from Lemma 3.4 and ‖Jg(x)‖ ≤ Bg, ∀x ∈ dom(h). �

3.2. the case with a single constraint. For simplicity and ease of understanding, we start with the
case of m = 1, so the bold letters y,θ are actually scalars in this subsection. We show the complexity to
produce a point x̂ satisfying dist

(
0, ∂φ(x̂)

)
≤ ε̄ for a specified error tolerance ε̄ > 0. By Lemma 3.5, we can

first find a ŷ ≥ 0 such that |[θ(x(ŷ))]+− ŷ| ≤ ε̄
3βBg

and then approximately solve minx Φ(x, ŷ) to obtain x̂.

Our idea of finding a desired approximate solution ŷ is to first obtain an interval that contains the
solution ȳ = arg maxy≥0 d(y) and then to apply a bisection method. The following lemma shows that for a
given ŷ ≥ 0, we can either check if it is a desired approximate solution or obtain the sign of ∇d(ŷ) so that
we know the search direction to have a desired solution.

Lemma 3.6. Given δ > 0 and ŷ ≥ 0, let x̂ ∈ dom(h) be a point satisfying dist
(
0, ∂xΦ(x̂, ŷ)

)
≤ µδ

4Bg
. If∣∣[θ(x̂)]+ − ŷ

∣∣ ≤ 3δ
4 , then |[θ(x(ŷ))]+ − ŷ| ≤ δ. Otherwise, |[θ(x(ŷ))]+ − ŷ| > δ

2 , and ∇d(ŷ)(θ(x̂)− ŷ) > 0.
Proof. From Lemma 3.3 and the condition on x̂, it follows that

(3.10)
∣∣θ(x̂)− θ(x(ŷ))

∣∣ ≤ δ
4 , and

∣∣β(θ(x̂)− ŷ
)
−∇d(ŷ)

∣∣ ≤ βδ
4 .

10

Hence, by the nonexpansiveness of [·]+, it holds |[θ(x̂)]+− [θ(x(ŷ))]+| ≤ δ
4 . Then, by the triangle inequality,

we have |[θ(x(ŷ))]+ − ŷ| ≤ δ if |[θ(x̂)]+ − ŷ| ≤ 3δ
4 and |[θ(x(ŷ))]+ − ŷ| > δ

2 otherwise.

When |[θ(x̂)]+ − ŷ| > 3δ
4 , it must hold |θ(x̂) − ŷ| > 3δ

4 because ŷ ≥ 0, and thus |β(θ(x̂) − ŷ)| > 3βδ
4 .

Therefore, from the second inequality in (3.10), we conclude that ∇d(ŷ) must have the same sign as θ(x̂)−ŷ,
because otherwise

∣∣β(θ(x̂)− ŷ
)
−∇d(ŷ)

∣∣ ≥ |β(θ(x̂)− ŷ)| > 3βδ
4 . This completes the proof. �

By this lemma, we design an interval search algorithm that can either return a point ŷ ≥ 0 such that
|[θ(x(ŷ))]+ − ŷ| ≤ δ or return an interval Y = [a, b] ⊆ [0,∞) that contains the solution ȳ. The pseudocode
is shown in Algorithm 3.

Algorithm 3: Interval search: Y = IntV(β, z, δ, Lmin, γ1, γ2)

1 Input: multiplier vector z ≥ 0, penalty β > 0, target accuracy δ > 0, Lmin > 0, and γ1 > 1, γ2 ≥ 1

2 Overhead: define θ(x) = g(x) + z
β

, Φ(x,y) as in (3.3), and ε̄ = µδ
4Bg

.

3 Initial step: call Alg. 2: x̂ = APG(ψ, h, µ, Lmin, ε̄, γ1, γ2) with ψ = Φ(·, 0)− h. . so

dist
(
0, ∂xΦ(x̂, 0)

)
≤ µδ

4Bg

4 if [θ(x̂)]+ ≤ 3δ
4

then
5 Return Y = {0} and stop. . otherwise, ∇d(0) is positive

6 Let a = 0, b = 1
β

and call Alg. 2: x̂ = APG(ψ, h, µ, Lmin, ε̄, γ1, γ2) with ψ = Φ(·, b)− h. . set b = O(1
β

)

7 while ‖[θ(x̂)]+ − b‖ > 3δ
4

and θ(x̂)− b > 0 do
8 let a← b, and increase b← 2b. . fine to multiply b by a constant σ > 1
9 call Alg. 2: x̂ = APG(ψ, h, µ, Lmin, ε̄, γ1, γ2) with ψ = Φ(·, b)− h.

10 if ‖[θ(x̂)]+ − b‖ ≤ 3δ
4

then
11 Return Y = {b} and stop. . found ŷ = b such that |[θ(x(ŷ))]+ − ŷ| ≤ δ
12 else
13 Return Y = [a, b] and stop. . found an interval containing ȳ

Once the stopping condition in Line 4 or 10 is satisfied, then by Lemma 3.6, we immediately obtain a
desired ŷ such that |[θ(x(ŷ))]+ − ŷ| ≤ δ. The next lemma shows that the algorithm must exit the while
loop within a finitely many iterations.

Lemma 3.7. Given δ > 0, if b ≥ 2‖z∗‖+‖z‖
β and dist

(
0, ∂xΦ(x̂, b)

)
≤ µδ

4Bg
, then either ‖[θ(x̂)]+− b‖ ≤ 3δ

4

or θ(x̂)− b < 0.

Proof. From Lemma 3.1, it follows that ȳ = [θ(x(ȳ))]+ ≤ 2‖z∗‖+‖z‖
β . The result in (3.8) indicates the

decreasing monotonicity of θ(x(y)) with respect to y. Hence, if b ≥ 2‖z∗‖+‖z‖
β , then θ(x(b)) ≤ θ(x(ȳ)) ≤

2‖z∗‖+‖z‖
β ≤ b, and thus θ(x(b)) − b ≤ 0. Now if |[θ(x̂)]+ − b| > 3δ

4 , we know from Lemma 3.6 that

∇d(b)
(
θ(x̂)− b

)
> 0, and thus θ(x̂)− b < 0 since ∇d(b) = β(θ(x(b))− b) ≤ 0. This completes the proof. �

When Algorithm 3 exits the while loop, it can output a single point or an interval. The lemma below
shows that if an interval is returned, then it will contain the solution ȳ.

Lemma 3.8. Given δ > 0, let Y be the return from Algorithm 3. If Y contains a single point ŷ,
then |[θ(x(ŷ))]+ − ŷ| ≤ δ. Otherwise, Y is an interval [a, b], and it holds that ∇d(a) > 0,∇d(b) < 0, and
ȳ ∈ [a, b].

11

Proof. If Y contains a single point ŷ, then the condition in either Line 4 or 10 of Algorithm 3 is satisfied,
and we immediately have |[θ(x(ŷ))]+ − ŷ| ≤ δ from Lemma 3.6.

Now suppose that Y is an interval [a, b]. From Lemma 3.6 and the setting in Line 8 of Algorithm 3,
we always have ∇d(a) > 0. When the algorithm exits the while loop and returns an interval, we have
‖[θ(x̂)]+− b‖ > 3δ

4 but θ(x̂)− b ≤ 0. Then it follows from Lemma 3.6 that ∇d(b) < 0. Therefore, the unique
solution ȳ must lie in (a, b) by the Mean-Value Theorem and the strong concavity of d. �

Remark 3.1. Suppose Algorithm 3 returns an interval [a, b]. Then Lemma 3.7 indicates that b ≤
1
β max{1, 4‖z∗‖ + 2‖z‖}, and in addition, at most T + 2 calls are made to Alg. 2, where T is the smallest

non-negative integer such that 2T ≥ 2‖z∗‖+ ‖z‖.
Suppose Algorithm 3 returns an interval [a, b]. We can then use the bisection method to obtain a desired

point ŷ. The pseudocode is given in Algorithm 4.

Algorithm 4: Bisection method for maxy≥0 d(y): (x̂, ŷ) = BiSec(β, z, δ, Lmin, γ1, γ2)

1 Input: multiplier vector z ≥ 0, penalty β > 0, target accuracy δ > 0, Lmin > 0, and γ1 > 1, γ2 ≥ 1

2 Overhead: define θ(x) = g(x) + z
β

, Φ(x,y) as in (3.3), and ε̄ = µδ
4Bg

.

3 Call Alg. 3: Y = IntV(β, z, δ, Lmin, γ1, γ2) and denote it as [a, b]. . If Y is a singleton, then a = b

4 while b− a > µδ
µ+βB2

g
do

5 let c = a+b
2

and call Alg. 2: x̂ = APG(ψ, h, µ, Lmin, ε̄, γ1, γ2) with ψ = Φ(·, c)− h
6 if |[θ(x̂)]+ − c| ≤ 3δ

4
then

7 Let ŷ = c, return (x̂, ŷ), and stop

8 else if θ(x̂)− c > 0 then
9 let a← c

10 else
11 let b← c.

12 Let ŷ = a+b
2

and x̂ = APG(ψ, h, µ, Lmin, ε̄, γ1, γ2) with ψ = Φ(·, ŷ)− h, return (x̂, ŷ), and stop.

By Lemma 3.6 and the lemma below, it holds that the returned point ŷ from Algorithm 4 must satisfy
|[θ(x(ŷ))]+ − ŷ| ≤ δ.

Lemma 3.9. Let Y = [a, b] ⊆ (0,∞). If ∇d(a) > 0, ∇d(b) < 0, and b−a ≤ µδ
µ+βB2

g
for a positive δ, then

|[θ(x(ŷ))]+ − ŷ| ≤ δ for any ŷ ∈ [a, b].
Proof. Recall from Lemma 3.1 that ȳ = [θ(x(ȳ))]+. Hence, for any ŷ ∈ [a, b], we have

‖[θ(x(ŷ))]+ − ŷ‖ = ‖[θ(x(ŷ))]+ − ŷ − [θ(x(ȳ))]+ + ȳ‖
≤ ‖[θ(x(ŷ))]+ − [θ(x(ȳ))]+‖+ ‖ŷ − ȳ‖
≤ ‖θ(x(ŷ))− θ(x(ȳ))‖+ ‖ŷ − ȳ‖
≤ Bg‖x(ŷ)− x(ȳ)‖+ ‖ŷ − ȳ‖

≤ βB2
g

µ ‖ŷ − ȳ‖+ ‖ŷ − ȳ‖,(3.11)

where we have used the non-expansiveness of [·]+ in the second inequality, the third inequality follows from
(3.1), and the last inequality holds because of (3.9). Now since ȳ ∈ [a, b], we have ‖ŷ− ȳ‖ ≤ b− a ≤ µδ

µ+βB2
g
,

and thus the desired result follows. �

12

Remark 3.2. Since the bisection method halves the interval every time, it takes at most dlog2
(b−a)(µ+βB2

g)

µδ e+
halves to reduce an initial interval [a, b] to one with length no larger than µδ

µ+βB2
g

. Notice a ≥ 0 and

b ≤ 1
β max{1, 4‖z∗‖+ 2‖z‖} from Remark 3.1. Hence, after Y is obtained, Algorithm 4 will call Algorithm 2

at most

⌈
log2

max
{

1, 4‖z∗‖+2‖z‖
}

(µ+βB2
g)

βµδ

⌉
+

+ 1 times.

Below we establish the complexity result of Algorithm 4 to return ŷ.
Theorem 3.10 (Iteration complexity of BiSec). Under Assumptions 1–4, Algorithm 4 needs at most T

evaluations on f , θ, ∇f , and Jθ to output x̂ and ŷ ≥ 0 that satisfy dist
(
0, ∂xΦ(x̂, ŷ)

)
≤ ε̄ and |[θ(x(ŷ))]+−

ŷ| ≤ δ, where ε̄ = µδ
4Bg

, and

T = K
(

1 + dlogγ1

Lz

Lmin
e+
)(

1 + 2
⌈
2
√

γ1Lz

µ log
(
Dh
ε̄

(√
γ1Lz + Lz√

Lmin

)√
2γ1Lz + µ

)⌉
+

)
,

with Lz = Lf + Lg max{1, 4‖z∗‖+ 2‖z‖} and

(3.12) K = 3 + dlog2(2‖z∗‖+ ‖z‖)e+ +

⌈
log2

max
{

1, 4‖z∗‖+2‖z‖
}

(µ+βB2
g)

βµδ

⌉
+

.

Proof. By Remarks 3.1 and 3.2, Algorithm 4 calls Algorithm 2 at most K times, where K is given in
(3.12). Notice that the gradient of ψ = Φ(·, b) − h is Lipschitz continuous with constant Lf + βbLg. Since
b ≤ 1

β max{1, 4‖z∗‖+ 2‖z‖} from Remark 3.1, we apply Corollary 2.3 to obtain the desired result. �

3.3. the case with multiple constraints. In this subsection, we consider the case of m > 1. Similar
to the case of m = 1, we use a cutting-plane method to approximately solve maxy≥0 d(y). The next lemma
is the key. It provides the foundation to generate a cutting plane if a query point is not sufficiently close to
the solution ȳ = arg maxy≥0 d(y).

Lemma 3.11. Let b > 0, and suppose ‖ȳ‖ ≤ b. Given δ > 0 and ŷ ≥ 0, let x̂ ∈ dom(h) be a point

satisfying dist
(
0, ∂xΦ(x̂, ŷ)

)
≤ min{ µδ4Bg

, µ2δ
8Bg(µ+βB2

g)}. If ‖[θ(x̂)]+ − ŷ‖ ≤ 3δ
4 , then ‖[θ(x(ŷ))]+ − ŷ‖ ≤ δ.

Otherwise,
∥∥[θ(x(ŷ))]+−ŷ

∥∥ > δ
2 , and also 〈θ(x̂)−ŷ,y−ŷ〉 > 0 for any y ∈ Bη(ȳ)∩B+

b , where η = min{b, η+},
and η+ is the positive root of the equation

(3.13)
µ+βB2

g

µ

(
η +

√
2ηBd
β

)
= δ

4 , with Bd = maxy∈B+
b
∇d(y).

Proof. By the same arguments in the proof of Lemma 3.6, we can show that ‖[θ(x(ŷ))]+ − ŷ‖ ≤ δ if
‖[θ(x̂)]+− ŷ‖ ≤ 3δ

4 and ‖[θ(x(ŷ))]+− ŷ‖ > δ
2 otherwise. Hence, we only need to show 〈θ(x̂)− ŷ,y− ŷ〉 > 0

for any y ∈ Bη(ȳ) ∩ B+
b in the latter case, and we prove this by contradiction.

Suppose ‖[θ(x̂)]+ − ŷ‖ > 3δ
4 and the following condition holds

(3.14) 〈θ(x̂)− ŷ,y − ŷ〉 ≤ 0, for some y ∈ Bη(ȳ) ∩ B+
b .

By the β-strong concavity of d, it holds

(3.15) d(y) ≤ d(ŷ) + 〈∇d(ŷ),y − ŷ〉 − β
2 ‖y − ŷ‖2.

13

From the Mean-Value Theorem, it follows that there is ỹ between y and ȳ such that d(y)−d(ȳ) = 〈∇d(ỹ),y−
ȳ〉 ≥ −ηBd, where the inequality holds because y ∈ Bη(ȳ) and ỹ must fall in B+

b . Since d(ȳ) ≥ d(ŷ), we
have d(ŷ)− d(y) ≤ d(ȳ)− d(y) ≤ ηBd. Hence, (3.14) and (3.15) imply

(3.16) β
2 ‖y − ŷ‖2 ≤ ηBd + 〈β(θ(x̂)− ŷ)−∇d(ŷ), ŷ − y〉.

From Lemma 3.3 and the condition dist
(
0, ∂xΦ(x̂, ŷ)

)
≤ µ2δ

8Bg(µ+βB2
g) , it follows ‖β(θ(x̂) − ŷ) − ∇d(ŷ)‖ ≤

βµδ
8(µ+βB2

g) , which together with (3.16) and the Cauchy-Schwartz inequality gives

β
2 ‖y − ŷ‖2 ≤ ηBd + βµδ

8(µ+βB2
g)‖ŷ − y‖.

Solving the above inequality, we have ‖y − ŷ‖ ≤
√

2ηBd
β + µδ

4(µ+βB2
g) , and since ‖y − ȳ‖ ≤ η, it holds

‖ȳ− ŷ‖ ≤ η +
√

2ηBd
β + µδ

4(µ+βB2
g) . Now noting that (3.11) also holds for the case of m > 1 as its proof does

not rely on m = 1, we have

(3.17) ‖[θ(x(ŷ))]+ − ŷ‖ ≤ µ+βB2
g

µ

(
η +

√
2ηBd
β + µδ

4(µ+βB2
g)

)
=

µ+βB2
g

µ

(
η +

√
2ηBd
β

)
+ δ

4 ≤
δ
2 ,

where the last inequality follows from the choice of η.
However, we know that when ‖[θ(x̂)]+ − ŷ‖ > 3δ

4 , it holds ‖[θ(x(ŷ))]+ − ŷ‖ > δ
2 , and (3.17) contradicts

to this fact. Therefore, the assumption in (3.14) cannot hold. This completes the proof. �

Suppose ‖ȳ‖ ≤ b for some b > 0. For a given ŷ ≥ 0, let x̂ satisfy the condition required in Lemma 3.11.
Then if ‖[θ(x̂)]+ − ŷ‖ > 3δ

4 , we find a half-space containing the set Bη(ȳ) ∩ B+
b , whose volume is at least

4−mVm(η) if η ≤ b. Therefore, we can apply a cutting-plane method to find a near-optimal ŷ. In order to
have a good scalability to m, we choose the volumetric-center cutting-plane (VCCP) method [1, 37]. Below
we first give the more efficient version of VCCP in [1] and then adapt it to solve our problem.

Volumetric-center cutting-plane (VCCP) method. Let C be a convex set in Rm. Suppose that
there is a separation oracle. Given a point ỹ ∈ Rm, the separation oracle can either tell ỹ ∈ C or return one
vector a such that a>y > a>ỹ,∀y ∈ C. By using the oracle, VCCP aims to solve the feasibility problem:
find a point y ∈ C or show that the volume of C is less than a given positive number ρ.

Let P = {y ∈ Rm : Ay ≥ b} be a polytope with nonempty interior. For each interior point y in P, i.e.,
Ay − b > 0, the volumetric barrier function is defined as

(3.18) V (y) = 1
2 log

(
det
(
A>S(y)−2A

))
, with S(y) = Diag(Ay − b),

where det(·) denotes the determinant. The minimizer of V (·) is called the volumetric center (VC) of P. Let

(3.19) Q(y) = A>S(y)−2Diag(p(y))A, with p(y) = diag
(
S(y)−1A(A>S(y)−2A)−1A>S(y)−1

)
.

With these notations, the pseudocode of the VCCP is given in Algorithm 5, where we define Sk = S(yk),
Qk = Q(yk), V k(yk) = V (yk), pk = p(yk), and pkmin = min1≤i≤m p

k
i by using (3.18) and (3.19) for P = Pk.

The lemma below is obtained from Lemma 3.1 in [1] and its proof.

Lemma 3.12. Suppose C ⊆ P0 and c1 ≤ c2 ≤ 0.03. Let V kmax = log Vm(1)
ρ +m log(nk) + 0.00135, where

nk is the number of rows of Ak and Vm(1) is the volume of a unit ball in Rm. If Algorithm 5 terminates
because V k(y) ≥ V kmax for some k, then the volume of C is smaller than ρ.

14

Algorithm 5: Volumetric-center cutting-plane (VCCP) method

1 Initialization: choose a polytope P0 = {y : A0y ≥ b0} that has a VC y0 in the interior of P0, choose
pmin ∈ (0, 1), τ > 0, and 0 < c1 ≤ c2; set k = 0.

2 while V k(yk) < V kmax do

3 if pkmin ≥ pmin then

4 Call the separation oracle to check whether yk ∈ C. If so, return yk and stop. Otherwise, obtain ã

from the oracle such that ã>y > ã>yk, ∀y ∈ C. Let Ak+1 = [Ak; ã>] and bk+1 = [bk; b̃] with

(3.20) b̃ = ã>yk − 1√
τ

√
ã>
(
(Ak)>(Sk)−2Ak

)−1
ã;

5 else

6 Suppose pkj = pkmin. Let [Ak+1,bk+1] be obtained by removing the j-th row from [Ak,bk];

7 Let Pk+1 = {y : Ak+1y ≥ bk+1}; start from yk and apply a sequence of pure Newton’s steps to find

yk+1 as an approximate VC of Pk+1 such that

(3.21) ‖(Qk+1)−1∇V k+1(yk+1)‖Qk+1 ≤ min
{
c1, (2

√
pk+1

min − p
k+1
min)

1
2 c2
}

;

set k ← k + 1.

Also we have the following theorem from [1].
Theorem 3.13. Suppose that A0 has 2m rows. Let pmin = 0.005, τ = 0.007, c1 = 0.0001, c2 = 0.00027

and V kmax = log Vm(1)
ρ + m log(nk) + 0.00135 in Algorithm 5 with ρ ∈ (0, Vm(1)). Then at most five

Newton steps are needed to ensure the condition in (3.21). In addition, Algorithm 5 must terminate in⌈
Γ
(
m logm+ log Vm(1)

ρ + 6m− V 0(y0)
)

+ 16m+ 1
⌉

calls to the separation oracle, where Γ ≤ 5406 is a uni-

versal constant.
Proof. From (3.8) to (3.9) in the proof of [1, Theorem 3.2], we have that V k(yk) ≥ V kmax occurs if

(3.22) V 0(y0) + k
2 ∆V − m

2 (∆V + + ∆V −) ≥ log Vm(1)
ρ +m log(1 + 1

pmin
) +m logm+ 0.00135

where ∆V + = 0.00301,∆V − = 0.00264 and ∆V = ∆V + −∆V − = 0.00037 by Theorems 6.4 and 6.5 and
Corollary 6.6 in [1]. We complete the proof by solving (3.22) for k and noting log(1 + 1

pmin
) ≤ 6. �

Remark 3.3. From the proof of Theorem 6.4 in [1], if each yk is the VC of Pk, then ∆V + = 1
2 log(1+τ)

and ∆V − = 1
2 log(1 − pmin). In this case, the constant Γ can be significantly reduced by increasing τ . For

example, let τ = 2 and pmin = 0.005. Then ∆V + < 0.5494, ∆V − < 0.0027, and ∆V > 0.5466. To have

(3.22), it suffices to let k ≥ 3.66
(
m logm+log Vm(1)

ρ +6m−V 0(y0)
)
+2m+1. Notice that if τ =∞ in (3.20),

the generated cut (ã, b̃) will pass through yk. Roughly speaking, a larger τ gives a deeper cut and reduces the
constant Γ in Theorem 3.13, but more Newton iterations will be needed to find a sufficiently accurate VC.

From Lemma 3.12 and Theorem 3.13, we conclude that if C ⊆ P0 and the volume of C is no smaller than
ρ, then Algorithm 5 must be able to find a point ỹ ∈ C. The proof of the above theorem is essentially by the
logic that V k(yk) ≥ V kmax will eventually occur if a point in C is never found. Below, we exploit this idea and
adapt the VCCP method to solve our problem in Algorithm 6, where nk denotes the number of rows of Ak for
each k ≥ 0. Notice that from Lemma 3.11, if ‖ȳ‖ ≤ b and C := Bη(ȳ)∩B+

b ⊆ P0, then the cut (ã, b̃) generated

15

from Line 18 satisfies ã>y > b̃,∀y ∈ C and thus C ⊆ Pk for all k ≥ 0. The checking in Lines 7 and 9 ensures
that the subproblem solved in Line 12 will be strongly convex and have a bounded smoothness constant.
Also notice that different from what we do in Algorithm 5, we fix pmin = 0.005, c1 = 0.0001, c2 = 0.00027
but only leave τ to be tuned in Algorithm 6.

Algorithm 6: VCCP method for maxy≥0 d(y): (x̂, ŷ,FLAG) = VCCP(β, z, δ, b, Lmin, γ1, γ2)

1 Input: multiplier vector z ≥ 0, penalty β > 0, target accuracy δ > 0, b > 0, Lmin > 0, and γ1 > 1, γ2 ≥ 1

2 Overhead: define θ(x) = g(x) + z
β

, Φ(x,y) as in (3.3), ε̄ = min{ µδ
4Bg

, µ2δ
8Bg(µ+βB2

g)
}, and FLAG = 0.

3 Let η+ be the positive root of (3.13), η ← min{b, η+}, and ρ = 4−mVm(η); set k = 0.

4 Set A0 = [I;−I],b0 = [0m;−b1n]; let P0 = {y ∈ Rm : A0y ≥ b0}, y0 = b
2
1; choose τ ≥ 0.007

5 while V k(yk) < V kmax := log Vm(1)
ρ

+m log(nk) + 0.00135 do

6 if pkmin ≥ 0.005 then

7 if yk 6≥ 0 then

8 Let ã = ei0 where i0 = arg mini∈[m] y
k
i . to ensure a check point in Rm+

9 else if ‖yk‖ > b then

10 Let ã = −yk . to ensure a check point in Bb
11 else

12 Call Alg. 2: xk = APG(ψ, h, µ, Lmin, ε̄, γ1, γ2) with ψ = Φ(·,yk)− h
13 if ‖[θ(xk)]+ − yk‖ ≤ 3δ

4
then

14 Let (x̂, ŷ) = (xk,yk) and FLAG = 1;
15 Return (x̂, ŷ,FLAG), and stop . found ŷ such that |[θ(x(ŷ))]+ − ŷ| ≤ δ
16 else

17 Let ã = θ(xk)− yk

18 Let Ak+1 = [Ak; ã>] and bk+1 = [bk; b̃] with b̃ given by (3.20)

19 else

20 Suppose pkj = pkmin. Let [Ak+1,bk+1] be obtained by removing the j-th row from [Ak,bk]

21 Let Pk+1 = {y : Ak+1y ≥ bk+1}; start from yk and apply a sequence of pure Newton’s steps to find

yk+1 as an approximate VC of Pk+1 such that (3.21) holds with c1 = 0.0001 and c2 = 0.00027.
22 Increase k ← k + 1.

23 Let (x̂, ŷ) = (xk,yk) and return (x̂, ŷ,FLAG)

Similar to Theorem 3.13, we are able to show the finite convergence of Algorithm 6.

Theorem 3.14. Under Assumptions 1–4, Algorithm 6 with τ = 0.007 will stop within N iterations,

where N =
⌈
Γ
(
m logm+m log

√
2b
η + 6m

)
+ 16m+ 1

⌉
, η is defined in Line 3 of the algorithm, and Γ ≤ 5406

is a universal constant. In addition, if ‖ȳ‖ ≤ b, Algorithm 6 must return FLAG = 1 and a vector ŷ ≥ 0
satisfying ‖[θ(x(ŷ))]+ − ŷ‖ ≤ δ with at most T evaluations of f , ∇f , θ, and Jθ, where

(3.23) T = N
(

1 + dlogγ1

Lψ
Lmin
e+
)(

1 + 2
⌈
2
√

γ1Lψ
µ log

(
Dh
ε̄

(√
γ1Lψ +

Lψ√
Lmin

)√
2γ1Lψ + µ

)⌉
+

)
,

with Lψ := Lf + βbLg, and ε̄ = min{ µδ4Bg
, µ2δ

8(µBg+βB3
g)}.

16

Proof. First, notice that y0 is the VC of P0. Second, it is straightforward to compute V 0(y0) = m log 2
√

2
b

and log Vm(1)
ρ = m log 4

η . Hence, from the proof of Theorem 3.13, V k(yk) ≥ V kmax must occur if k ≥⌈
Γ
(
m logm+m log

√
2b
η + 6m

)
+ 16m+ 1

⌉
, where Γ ≤ 5406 is a universal constant.

It is obvious that C := Bη(ȳ) ∩ B+
b ⊆ P0 by the choice of P0. Below we argue that C ⊆ Pk for all

k ≥ 0 before the algorithm stops. First, if Pk+1 is obtained by deleting one row from the system of Pk, then
Pk ⊆ Pk+1; second, if ã is obtained from Line 8 or Line 10 of Algorithm 6, the generated cut (ã, b̃) will not
cut any point from C; thirdly, if ã is obtained from Line 17, by Lemma 3.11, the generated cut (ã, b̃) will not
cut any point from C either. Therefore, if C ⊆ Pk, then C ⊆ Pk+1, and thus by induction C ⊆ Pk,∀ k ≥ 0.
Now since the volume of C is no smaller than ρ, we conclude that there must be a point xk from Line 12 of
Algorithm 6 such that the condition in Line 13 is satisfied. Hence, the algorithm will return FLAG = 1 and
a vector ŷ ≥ 0 satisfying ‖[θ(x(ŷ))]+ − ŷ‖ ≤ δ by Lemma 3.11.

Finally, notice that when Algorithm 2 is called in Line 12, ‖yk‖ ≤ b, and thus the smooth function ψ
has (Lf + βLgb)-Lipschitz continuous gradient. Since Algorithm 2 is called at most N times, we have from
Corollary 2.3 that the total number of function and gradient evaluations is T given in (3.23). �

As discussed in Remark 3.3, the constant Γ can be reduced to 3.66 if τ = 2 is used, like in our numerical
experiments. By Theorem 3.14, we can guarantee to find a desired approximate solution ŷ by gradually
increasing the search radius b. The algorithm is shown below.

Algorithm 7: Search by the VCCP Method for maxy≥0 d(y): (x̂, ŷ) = SVCCP(β, z, δ, Lmin, γ1, γ2)

1 Input: multiplier vector z ≥ 0, penalty β > 0, target accuracy δ > 0, Lmin > 0, and γ1 > 1, γ2 ≥ 1
2 Overhead: define θ(x) = g(x) + z

β
, Φ(x,y) as in (3.3), and set k = 0, b0 = 1

β
and FLAG = 0.

3 while FLAG = 0 do
4 Call Alg. 6: (x̂, ŷ,FLAG) = VCCP(β, z, δ, bk, Lmin, γ1, γ2).
5 Let bk+1 ← 2bk and increase k ← k + 1.

6 Output (x̂, ŷ).

Theorem 3.15. Under Assumptions 1–4, if δ ≤ 8(µ+βB2
g)

βµ , then the output (x̂, ŷ) of Algorithm 7 must

satisfy dist
(
0, ∂xΦ(x̂, ŷ)

)
≤ ε̄, ŷ ≥ 0 and ‖[θ(x(ŷ))]+ − ŷ‖ ≤ δ, where ε̄ = min{ µδ4Bg

, µ2δ
8Bg(µ+βB2

g)}. In

addition, it needs at most T evaluations of f , ∇f , θ, and Jθ to give the output, where

(3.24) T ≤ 3CK + 4C
√
γ1 log

(
Dh
ε̄

(√
γ1Lmax + Lmax√

Lmin

)√
2γ1Lmax + µ

)(
K
√

Lf
µ

+

√
Lg max

{
1,

2
√

2‖z∗‖+‖z‖√
2−1

}
√
µ

)
,

with the constants defined as

Lmax = Lf + Lg(4‖z∗‖+ 2‖z‖), C =
⌈
Γ
(
m logm+m logR+ 6m

)
+ 16m+ 1

⌉
·
(

1 + dlogγ1

Lmax
Lmin

e+
)
,

R = 8
√

2(max{1, 4‖z∗‖+2‖z‖})
β

(
4(βG+‖z‖+max{1, 4‖z∗‖+2‖z‖})(µ+βB2

g)2

β(µδ)2
+

µ+βB2
g

µδ

)
, K = dlog2(2‖z∗‖+ ‖z‖)e+ + 1,

and Γ ≤ 5406 is a universal constant.

17

Proof. By the quadratic formula, we can easily have the positive root of (3.13) to be

η+ =

(
µδ

µ+βB2
g

)2

4

(√
2Bd
β +

√
2Bd
β + µδ

µ+βB2
g

)2 ≥

(
µδ

µ+βB2
g

)2

8

(
4Bd
β + µδ

µ+βB2
g

) .

Hence, it holds that

b
η+
≤

8b

(
4Bd
β + µδ

µ+βB2
g

)
(

µδ

µ+βB2
g

)2 = 8b
(

4Bd(µ+βB2
g)2

β(µδ)2 +
µ+βB2

g

µδ

)
.

When b ≥ 1
β , the right hand side of the above inequality is greater than one by the assumption δ ≤ 8(µ+βB2

g)

βµ ,

and since η = min{η+, b} in Algorithm 6, we have

(3.25) b
η = max{ b

η+
, 1} ≤ 8b

(
4Bd(µ+βB2

g)2

β(µδ)2 +
µ+βB2

g

µδ

)
≤ 8b

(
4(βG+‖z‖+βb)(µ+βB2

g)2

β(µδ)2 +
µ+βB2

g

µδ

)
,

where we have used ∇d(y) = β(g(x(y)) + z
β − y) in (3.7) and thus the bound of ∇d(y) over B+

b satisfies

Bd ≤ βG+ ‖z‖+ βb with G defined in (1.3).

Furthermore, by Lemma 3.1 and Theorem 3.14, Algorithm 6 must return FLAG = 1 and a vector ŷ

satisfying ‖[θ(x(ŷ))]+ − ŷ‖ ≤ δ when b ≥ 2‖z∗‖+‖z‖
β . Since b0 = 1

β and bk+1 = 2bk, Algorithm 7 must
stop after making at most K calls to Algorithm 6, where K is the smallest positive integer such that
2K−1 ≥ 2‖z∗‖+ ‖z‖, i.e., K = dlog2(2‖z∗‖+ ‖z‖)e+ + 1. In addition, from bk+1 = 2bk, it holds

(3.26) bk = 2k

β ≤
max{1, 4‖z∗‖+2‖z‖}

β , for each 0 ≤ k ≤ K − 1.

In the k-th call to Algorithm 6, let ηk denote the η used in Line 3 of Algorithm 6, Lψk = Lf + βLgbk
the gradient Lipschitz constant of the smooth function ψ, and Tk the total number of gradient and function
evaluations. Then, by (3.26) and the definition of Lmax, we have Lψk ≤ Lmax. Also, from (3.25), (3.26), and

the definition of R, it follows
√

2bk
ηk
≤ R for each 0 ≤ k ≤ K − 1. Moreover, we have from (3.23) that

Tk ≤C

(
1 + 2

⌈
2
√

γ1Lψk
µ

log

(
Dh
ε̄

(√
γ1Lψk +

Lψk√
Lmin

)√
2γ1Lψk + µ

)⌉
+

)

≤ 3C + 4C
√

γ1Lψk
µ

log

(
Dh
ε̄

(√
γ1Lmax + Lmax√

Lmin

)√
2γ1Lmax + µ

)
.

Notice that
√
Lψk ≤

√
Lf +

√
βLgbk and, thus

∑K−1
k=0

√
Lψk ≤ K

√
Lf +

∑K−1
k=0

√
βLgbk = K

√
Lf +

√
Lg
√

2K−1√
2−1

≤ K
√
Lf +

√
Lg max

{
1,

2
√

2‖z∗‖+‖z‖√
2−1

}
.

Therefore, T must satisfy the condition in (3.24) since T ≤
∑K−1
k=0 Tk. �

18

4. Overall iteration complexity of the first-order augmented Lagrangian method. In this
section, we specify the implementation details in Algorithm 1. We use the method derived in section 3 as
the subroutine to find each xk+1. In addition, we choose a geometrically increasing sequence {βk} and stop
the algorithm once an ε-KKT point is obtained. The pseudocode is given in Algorithm 8. Notice that for
each k, we aim to find xk+1 such that dist

(
0, ∂φk(xk+1)

)
≤ εk, where φk is defined in (4.3) as the objective

of the k-th ALM subproblem. In Line 10, in case µ is big or βk is small, we call the APG in order to ensure
this by Lemma 3.5.

Algorithm 8: Cutting-plane first-order iALM for problems in the form of (1.1) with m = O(1)

1 Input: β0 > 0, σ > 1, tolerance ε > 0, Lmin > 0, γ1 > 1, and γ2 ≥ 1
2 Initialization: choose x0 ∈ dom(h), and set z0 = 0
3 for k = 0, 1, . . . do

4 Choose εk ≤ min
{
ε,

24Bg(µ+βkB
2
g)

µ

}
and set δk = εk

3βkBg
.

5 if m = 1 then

6 Call Alg. 4: (xk+1,yk+1) = BiSec(βk, z
k, δk, Lmin, γ1, γ2)

7 else

8 Call Alg. 7: (xk+1,yk+1) = SVCCP(βk, z
k, δk, Lmin, γ1, γ2)

9 if m = 1 and µ
4βkB

2
g
> 1, or m > 1 and min

{
µ

4βkB
2
g
, µ2

8βkB
2
g(µ+βkB

2
g)

}
> 1 then

10 Call Alg. 2: xk+1 = APG(ψ, h, µ, Lmin, εk/3, γ1, γ2) with ψ(x) = f(x) + βk
〈
yk+1,g(x)

〉
.

11 Update z by zk+1 = [zk + βkg(xk+1)]+.
12 Let βk+1 ← σβk.

13 if (xk+1, zk+1) is an ε-KKT point of (1.1) then

14 Output (x̄, z̄) = (xk+1, zk+1) and stop

The next theorem gives a bound on the number of calls to the subroutine.
Theorem 4.1. Suppose that Assumptions 1 through 4 hold. Let (β0, σ, ε, γ1, γ2) be the input of Algo-

rithm 8 and {(xk,yk, zk)}k≥0 be the generated sequence. Then dist
(
0, ∂Lβk(xk+1, zk)

)
≤ εk for each k ≥ 0.

Suppose ε̄ = min

{
ε,
√

εµ(σ−1)
8σ+1

}
≤
{
ε,

24Bg(µ+βkB
2
g)

µ

}
, ∀ k ≥ 0. Let εk = ε̄ for all k ≥ 0. Then after at most

K − 1 iterations, Algorithm 8 will produce an ε-KKT point of (1.1), where

(4.1) K = max

{⌈
logσ

9‖z∗‖2
β0ε

⌉
+
,
⌈
logσ

8‖z∗‖
β0ε

⌉
+
,
⌈
logσ

4
β0ε

⌉
+

}
+ 1.

In addition, the output multiplier vector z̄ satisfies

(4.2) ‖z̄‖ ≤ 2‖z∗‖+
√

2σ2

8σ+1 max
{

3‖z∗‖, 2
√

2‖z∗‖, 2
}
.

Proof. For each k ≥ 0, define

(4.3) θk(x) = g(x) +
zk

βk
, φk(x) = F (x) +

βk
2
‖[θk(x)]+‖ , Φk(x,y) = F (x) + βk

(
y>θk(x)− 1

2
‖y‖2

)
.

19

When m = 1, if (xk+1,yk+1) is obtained in Line 6 of Alg. 8, then we have from Theorem 3.10 that

dist
(
0, ∂xΦk(xk+1,yk+1)

)
≤ µδk

4Bg
, and

∣∣[θk(x(yk+1))]+ − yk+1
∣∣ ≤ δk,

where x(yk+1) = arg minx Φk(x,yk+1). Furthermore, notice that if µ
4βkB2

g
> 1, we will do Line 10 in Alg. 8

to obtain a new xk+1 that satisfies dist
(
0, ∂xΦk(xk+1,yk+1)

)
≤ εk

3 . Now by Lemma 3.5 and the choice of

δk = εk
3βkBg

, we have dist
(
0, ∂xLβk(xk+1, zk)

)
= dist

(
0, ∂φk(xk+1)

)
≤ εk.

When m > 1, by the choice of εk and δk, it holds δk ≤
8(µ+βkB

2
g)

βkµ
for each k. Hence, we can use

Theorem 3.15 and Lemma 3.5 to show dist
(
0, ∂xLβk(xk+1, zk)

)
≤ εk by the same arguments as in the case

of m = 1.
Therefore, for m ≥ 1, if εk = ε̄ for all k, we have from Theorem 2.6 that the inequalities in (2.9) and

(2.10) hold. By the choice of ε̄, it holds ε̄2(8σ+1)
2µ(σ−1) ≤

ε
2 . Since K − 1 ≥ logσ

9‖z∗‖2
β0ε

, then 9‖z∗‖2
2β0σK−1 ≤ ε

2 , and

thus we have from (2.10) that
∑m
i=1 |zKi gi(xK)| ≤ ε. In addition, noticing

√
2(
√
σ+1))√

8σ+1
≤ 1 and ε̄ ≤

√
εµ(σ−1)

8σ+1 ,

we have ε̄(
√
σ + 1)

√
2

µ(σ−1) ≤
√
ε, and thus (2.9) implies

∥∥[g(xK)]+
∥∥ ≤ 4‖z∗‖

β0σK−1 +
√
ε√

β0σK−1
.

Now by the setting of K in (4.1), we have that both terms on the right hand side of the above inequality
are no greater than ε/2. Hence, ‖[g(xK)]+‖ ≤ ε, and thus xK must be an ε-KKT point of (1.1).

To show (4.2), we have from the second inequality in (2.8) and the fact εk = ε̄ ≤
√

εµ(σ−1)
8σ+1 ,∀ k that

‖zk‖ ≤ 2‖z∗‖+
√

2β0ε̄2

µ
σk−1
σ−1 ≤ 2‖z∗‖+

√
2β0εσk

8σ+1 ,∀ k ≥ 1.

Hence, for each 1 ≤ k ≤ K with the K given in (4.1), it holds

‖zk‖ ≤ 2‖z∗‖+
√

2β0εσK

8σ+1 ≤ 2‖z∗‖+
√

2σ2

8σ+1 max
{

3‖z∗‖, 2
√

2‖z∗‖, 2
}
.

Since the output z̄ must be one of {zk}Kk=1, we complete the proof. �

By Theorem 4.1, we establish the overall iteration complexity of Algorithm 8 to produce an ε-KKT
point of (1.1). Notice that if m = 1, the complexity result in Theorem 3.15 is in the same order as that in
Theorem 3.10. Hence, we state the complexity result of Algorithm 8 for m = 1 and m > 1 together.

Theorem 4.2 (oracle complexity). Suppose that Assumptions 1 through 4 hold. Let (β0, σ, ε, γ1, γ2) be

the input of Algorithm 8 and {(xk,yk, zk)}k≥0 be the generated sequence. Suppose ε̄ = min

{
ε,
√

εµ(σ−1)
8σ+1

}
≤{

ε,
24Bg(µ+βkB

2
g)

µ

}
, ∀ k ≥ 0. Let εk = ε̄ for all k ≥ 0. Then to produce an ε-KKT point of (1.1), Algorithm 8

needs at most Ttotal = O
(
m
√

Lf+Lg(1+‖z∗‖)
µ | log ε|2(logm+ | log ε|)

)
evaluations on f , ∇f , g, and Jg.

Proof. Let K be the integer given in (4.1) and Lzk = Lf +Lg max{1, 4‖z∗‖+2‖zk‖} for 0 ≤ k ≤ K−1. Also,
let Tk be the number of evaluations on f , ∇f , g, and Jg during the k-th iteration of Algorithm 8. From
Theorem 3.10 and the setting δk = εk

3βkBg
, we have that the complexity incurred by Line 6 of Algorithm 8 is

20

O(
√

L
zk

µ | log ε|2). Also, from Theorem 3.15, the complexity incurred by Line 8 is O
(
(m
√

L
zk

µ | log ε|(logm+

| log ε|)
)

by noting logR = O(| log ε|). In addition, the complexity incurred by Line 10 is O
(√L

zk

µ | log ε|
)
.

From (2.8) with εt = ε̄, ∀ t, it follows ‖zk‖ = O(‖z∗‖), and thus Lzk = O(Lf+Lg(1+‖z∗‖)) for 0 ≤ k ≤ K−1.

Therefore, Tk = O
(
m
√

Lf+Lg(1+‖z∗‖)
µ | log ε|(logm + | log ε|)

)
. Since K = O(| log ε|) in (4.1), the total

complexity is
∑K−1
k=0 Tk = O

(
m
√

Lf+Lg(1+‖z∗‖)
µ | log ε|2(logm+ | log ε|)

)
, which completes the proof. �

Remark 4.1. If β0 is taken in the order of 1
ε , then K = O(1) in (4.1). In this case, the total oracle

complexity of Algorithm 8 is O
(
m
√

Lf+Lg(1+‖z∗‖)
µ | log ε|(logm + | log ε|)

)
to produce an ε-KKT point. The

complexity result is in a lower order than the best one O(ε−
1
2) in the literature if m = O(ε−q) with q < 1

2 .
This affirmatively answers the question we posed in the beginning. Notice that finding an approximate VC
of a polytope in Algorithm 6 takes Θ(m3) operations by the Newton’s method, as the number of constraints
defining each polytope is Θ(m) as shown in [1]. This cost can be negligible for high-dimensional problem, i.e.,
when n is very big, for which case the cost of querying an oracle can be much higher. Take the quadratically-
constrained quadratic program in (6.1) as an example. Computing the gradients of the objective and constraint
functions needs Θ(mn2) operations, far more than Θ(m3) if n� m.

5. Extensions to convex or nonconvex problems. In this section, we extend the idea of the cutting-
plane based FOM to constrained problems with a convex or nonconvex objective. Similar to the strongly
convex case, we show that FOMs for solving problems with O(1) nonlinear functional constraints can achieve
a complexity result of almost the same order as for solving unconstrained problems.

5.1. Extension to the convex case. We still consider the problem in (1.1). Suppose that the condi-
tions in Assumptions 1 and 2 hold. Instead of the strong convexity in Assumption 3, we assume the convexity
of f in this subsection.

Given a target accuracy ε > 0, to find an ε-KKT point of (1.1), we follow [15] and solve a perturbed
strongly-convex problem:

(5.1) min
x∈Rn

Fε(x) := fε(x) + h(x), s.t. g(x) := [g1(x), . . . , gm(x)] ≤ 0,

where

(5.2) fε(x) = f(x) +
ε

4Dh
‖x− x0‖2 with x0 ∈ dom(h).

Let x̄ ∈ dom(h) be an ε
2 -KKT point of (5.1), i.e., there is z̄ ≥ 0 such that

dist
(
0, ∂xL0(x̄, z̄) + ε

2Dh
(x̄− x0)

)
≤ ε

2 , ‖[g(x̄)]+‖ ≤ ε
2 ,

∑m
i=1 |z̄igi(x̄)| ≤ ε

2 ,

where L0 is the Lagrange function of (1.1). Since ‖ ε
2Dh

(x̄ − x0)‖ ≤ ε
2 , (x̄, z̄) must satisfy the conditions in

(1.5), and thus x̄ is an ε-KKT point of (1.1). Based on this observation, we can apply Algorithm 8 to the
perturbed problem (5.1). By Theorem 4.2 and noticing that fε in (5.2) is ε

2Dh
-strongly convex, we obtain

the following complexity result.
Theorem 5.1 (complexity result for convex cases). Assume that the conditions in Assumptions 1

and 2 hold and that f is convex. Given ε > 0, suppose that (5.1) has a KKT point x∗ε with a corresponding
multiplier z∗ε. Apply Algorithm 8 to find an ε

2 -KKT point x̄ of (5.1). Then x̄ is an ε-KKT point of (1.1), and

the total number of evaluations on f , ∇f , g, and Jg is O
(
m

√
Dh

(
Lf+Lg(1+‖z∗ε‖)

)
ε | log ε|2(logm+ | log ε|)

)
.

21

5.2. Extension to the nonconvex case. In this subsection, we assume Assumptions 1 and 2 but
do not assume the convexity of f . For the nonconvex case, we follow [19] and design an FOM within the
framework of the proximal-point method, namely, we solve a sequence of problems in the form of

(5.3) x̄k+1 ≈ arg min
x∈Rn

{
Fk(x) := f(x) + Lf‖x− x̄k‖2 + h(x), s.t. g(x) := [g1(x), . . . , gm(x)] ≤ 0

}
,

Under Assumptions 1 and 2, the above problem is convex, and its objective is Lf -strongly convex. Hence,
we can apply Algorithm 8 to find x̄k+1. Let xk+1

∗ be the unique optimal solution to (5.3). To ensure the
existence of a corresponding multiplier for each k and also a uniform bound, we assume the Slater’s condition
on the original problem (1.1).

Assumption 5 (Slater’s condition). There is xfeas ∈ relint(h) such that gi(xfeas) < 0 for all i =
1, . . . ,m.

With the Slater’s condition, the solution xk+1
∗ to (5.3) must be a KKT point (cf. [34]). Let zk+1

∗ ≥ 0 be
a corresponding multiplier. We give a uniform bound of zk+1

∗ below.
Lemma 5.2 (uniform bound of multipliers). Assume Assumptions 1, 2, and 5. Let x∗ be a minimizer

of (1.1), and let xk+1
∗ be the KKT point of (5.3) with a corresponding Lagrangian multiplier zk+1

∗ . Then

(5.4) ‖zk+1
∗ ‖ ≤ Bz :=

F (xfeas)−F (x∗)+LfD
2
h

mini

(
−gi(xfeas)

) ,∀ k ≥ 0.

Proof. From the KKT system, we have that

(5.5) −
∑m
i=1(zk+1

∗)i∇gi(xk+1
∗) ∈ ∂Fk(xk+1

∗), (zk+1
∗)igi(x

k+1
∗) = 0,∀ i = 1, . . . ,m.

Then we have ∑m
i=1(zk+1

∗)igi(xfeas) ≥
∑m
i=1(zk+1

∗)i

(
gi(x

k+1
∗) +

〈
xfeas − xk+1

∗ ,∇gi(xk+1
∗)

〉)
=
〈
xfeas − xk+1

∗ ,
∑m
i=1(zk+1

∗)i∇gi(xk+1
∗)

〉
≥ Fk(xk+1

∗)− Fk(xfeas),(5.6)

where the first inequality is from the convexity of each gi and the nonnegativity of zk+1
∗ , the equality holds

because of the second equation in (5.5), and the last inequality follows from the convexity of Fk and the first
equation in (5.5).

Since the diameter of dom(h) is Dh, it holds that

−Fk(xk+1
∗) + Fk(xfeas) = F (xfeas) + Lf‖xfeas − x̄k‖2 − F (xk+1

∗)− Lf‖xk+1
∗ − x̄k‖2

≤ F (xfeas)− F (xk+1
∗) + LfD

2
h.(5.7)

Notice F (xk+1
∗) ≥ F (x∗). Hence, F (xfeas) − F (xk+1

∗) ≤ F (xfeas) − F (x∗), and from (5.7), it follows that
−Fk(xk+1

∗) + Fk(xfeas) ≤ F (xfeas)− F (x∗) + LfD
2
h. Now we have from (5.6) that

‖zk+1
∗ ‖1 ≤ −Fk(xk+1

∗)+Fk(xfeas)

mini

(
−gi(xfeas)

) ≤ F (xfeas)−F (x∗)+LfD
2
h

mini

(
−gi(xfeas)

) ,

and we complete the proof by ‖zk+1
∗ ‖2 ≤ ‖zk+1

∗ ‖1. �

Similar to our discussion in section 5.1, we notice that if x̄k+1 is an ε
2 -KKT point of (5.3) and also

2Lf‖x̄k+1 − x̄k‖ ≤ ε
2 , then x̄k+1 is an ε-KKT point of (1.1). Below, we show that the sum of ‖x̄k+1 − x̄k‖2

22

can be controlled if each x̄k+1 is obtained with sufficient accuracy, and thus a near-KKT point of (1.1) can
be produced.

Theorem 5.3 (complexity result for nonconvex cases). Assume Assumptions 1, 2, and 5. Let x∗ be a
minimizer of (1.1). Let ε > 0 be given and x̄0 ∈ dom(h). Generate the sequence {(x̄k, z̄k)}k≥1 by applying

Algorithm 8 to (5.3) with the target accuracy ε̃ = min
{
ε
2 ,

3ε2

128Lf (Dh+2B̄z)

}
, where

(5.8) B̄z := 2Bz +
√

2σ2

8σ+1 max
{

3Bz, 2
√

2Bz, 2
}
,

with Bz defined in (5.4). Then after solving at most K proximal point subproblems as that in (5.3), we can
find an ε-KKT point of (1.1), where

(5.9) K =
⌈

128Lf (F (x̄0)−F (x∗)+LfD
2
h+B̄z‖[g(x̄0)]+‖)

3ε2

⌉
.

In addition, the total number of evaluations on on f , ∇f , g, and Jg is O
(
m
ε2 | log ε|2(logm+ | log ε|)

)
.

Proof. Since each (x̄k+1, z̄k+1) is an output from Algorithm 8 applied to (5.3) and with a target accuracy ε̃,
then x̄k+1 is an ε̃-KKT point of the problem in (5.3), and thus there is a subgradient ∇̃Fk(xk+1) ∈ ∂Fk(x̄k+1)
such that

(5.10) ‖∇̃Fk(x̄k+1) + J>g (x̄k+1)z̄k+1‖ ≤ ε̃, ‖g(x̄k+1)‖ ≤ ε̃,∀ k ≥ 0.

From the first inequality in (5.10) and recalling that the diameter of dom(h) is Dh, we have〈
x̄k+1 − x̄k, ∇̃Fk(x̄k+1) + J>g (x̄k+1)z̄k+1

〉
≤ Dhε̃.

Hence, by the Lf -strong convexity of Fk and convexity of each gi, we have

Dhε̃ ≥
〈
x̄k+1 − x̄k, ∇̃Fk(x̄k+1) + J>g (x̄k+1)z̄k+1

〉
≥ Fk(x̄k+1)− Fk(x̄k) +

Lf
2 ‖x̄

k+1 − x̄k‖2 + 〈z̄k+1,g(x̄k+1)− g(x̄k)〉

= F (x̄k+1)− F (x̄k) +
3Lf

2 ‖x̄
k+1 − x̄k‖2 + 〈z̄k+1,g(x̄k+1)− g(x̄k)〉.(5.11)

By (4.2) and (5.4), we have ‖z̄k+1‖ ≤ B̄z,∀ k ≥ 0, where B̄z is given in (5.8). Hence, it follows from the
second inequality in (5.10) that 〈z̄k+1,g(x̄k+1)− g(x̄k)〉 ≥ −2ε̃B̄z,∀ k ≥ 1. Now summing up (5.11) gives

(5.12)
3Lf

2

∑K−1
k=0 ‖x̄k+1 − x̄k‖2 ≤ KDhε̃+ F (x̄0)− F (x̄K) + (2K − 1)ε̃B̄z + B̄z‖[g(x̄0)]+‖,

where we have used 〈z̄1,g(x̄0)〉 ≤ ‖z̄1‖ · ‖[g(x̄0)]+‖ ≤ B̄z‖[g(x̄0)]+‖.
Because xK∗ is a KKT-point of (5.3) with a corresponding multiplier zK∗ , we have from (1.4) that

FK−1(x̄K)− FK−1(xK∗) +
〈
zK∗ ,g(x̄K)

〉
≥ 0.

Plugging FK−1(·) = F (·) + Lf‖ · −x̄K−1‖2 into the above equation gives

F (x̄K) + Lf‖x̄K − x̄K−1‖2 − F (xK∗)− Lf‖xK∗ − x̄K−1‖2 +
〈
zK∗ ,g(x̄K)

〉
≥ 0.

Now using (5.4), ‖g(x̄K)‖ ≤ ε̃, ‖x̄K − x̄K−1‖2 ≤ D2
h, and the fact F (xK∗) ≥ F (x∗), we have from the above

inequality that −F (x̄K) ≤ −F (x∗) + LfD
2
h + ε̃Bz. This inequality together with (5.12) gives

(5.13)
3Lf

2

∑K−1
k=0 ‖x̄k+1 − x̄k‖2 ≤ KDhε̃+ F (x̄0)− F (x∗) + LfD

2
h + 2Kε̃B̄z + B̄z‖[g(x̄0)]+‖.

23

Multiplying Lf to both sides of the above inequality and taking square root, we have

(5.14) min
0≤k<K

Lf‖x̄k+1 − x̄k‖ ≤
√

2
3Lf (Dhε̃+ 2B̄zε̃) +

√
2
3

Lf

(
F (x̄0)−F (x∗)+LfD2

h+B̄z‖[g(x̄0)]+‖
)

K .

Therefore, by the setting of ε̃ and K, we have min0≤k<K Lf‖x̄k+1− x̄k‖ ≤ ε
4 . Suppose Lf‖x̄k0+1− x̄k0‖ ≤ ε

4 .
Then by our discussion above Theorem 5.3, x̄k0+1 is an ε-KKT point of (1.1). From Theorem 4.2, the
complexity of solving one problem as that in (5.3) is O

(
m| log ε|2(logm + | log ε|)

)
, and thus the total

complexity is O(Km| log ε|2(logm+ | log ε|)) = O
(
m
ε2 | log ε|2(logm+ | log ε|)

)
. This completes the proof. �

6. Experimental results. In this section, we demonstrate the established theory by performing nu-
merical experiments on solving quadratically-constrained quadratic program (QCQP):

(6.1) min
x∈Rn

1
2x>Q0x + x>c0, s.t. 1

2x>Qjx + x>cj + dj ≤ 0, j = 1, . . . ,m; xi ∈ [li, ui], i = 1, . . . , n.

In the experiment, Q0 is generated to be positive definite, Qj is positive semidefinite but rank-deficient for
each j = 1, . . . ,m, and li = −10 and ui = 10 for each i. All dj are negative so the Slater’s condition holds.
In addition, we conduct tests on solving the elastic-net regularized Neyman-Pearson classification problem

(6.2) min
x∈Rn

1
N+

∑
a∈N+

log(1 + exp(−a>x)) + λ1‖x‖1 + λ2

2 ‖x‖
2, s.t. 1

N−

∑
a∈N− log(1 + exp(a>x)) ≤ α,

where N+ and N− respectively denote the sets of positive and negative samples, and N+ and N− are their
cardinality. The tests in sections 6.1 and 6.2 are conducted on a quad-core iMAC with 8GB memory, and
those in section 6.3 are conducted on a Windows PC with 10 CPU cores and 128GB memory.

6.1. Comparison of different first-order iALMs. We first compare two implementations of the
iALM in Algorithm 1 to solve (6.1). One directly applies the APG method in Algorithm 2 to solve each
ALM subproblem, and we call it “APG-based iALM”. The other uses the proposed cutting-plane based FOM
to solve subproblems, namely, we implement Algorithm 8 , and we call it “cutting-plane iALM”. For both
implementations, we set βk = 10k−1 for each outer iteration k ≥ 1 and run the iALM to 5 outer iterations.
The target accuracy for a near-KKT point is set to ε = 10−4. In the implementation of the APG-based
iALM, due to the quadratic penalty term, we apply Algorithm 2 with line search for a local smoothness
constant and set the parameters to γ1 = 1.5, γ2 = 2, Lmin = 1. In the implementation of the cutting-plane
iALM, we use Algorithm 2 to solve problems in the form of (3.5), for which we can explicitly compute the
global smoothness constant, and thus we simply set Lmin to the global smoothness constant. In addition,
we set τ = 2 in Algorithm 6 when it is called. Notice that Algorithm 6 works for any τ ≥ 0.007. However,
empirically we find that a small τ will result in more calls to the separation oracle, while a too-big τ will
cause trouble for finding a sufficiently accurate VC. τ = 2 gives a good trade off.

We test three groups of QCQP instances, each of which has n = 1000. The first group has m = 1
constraint, the second has m = 2, and the third has m = 5. For each group, we conduct 3 independent
trials. For each instance, we report the number of gradient and function evaluations, the primal residual,
dual residual, and complementarity violation, which are denoted as #grad, #func, pres, dres, and compl, for
solving each ALM subproblem. In order to demonstrate the worst-case theoretical result, we use randomly-
generated initial point while solving each ALM subproblem. The performance of the iALM can be much
better if the warm-start technique is adopted. The results are shown in Tables 1–3. For the cutting-plane
iALM, its #func. is zero and not shown in the tables, because we feed the APG an explicitly-computed
smoothness constant and no line search is performed.

24

From the results, we see that as the penalty parameter increases, the APG-based iALM needs significantly
more iterations to solve the subproblems, while the cutting-plane iALM does not suffer from the big penalty
parameter. However, the cutting-plane iALM has worse scalability to m, and this matches with our theory.

Table 1
Results by the APG based first-order iALM and the proposed cutting-plane based first-order iALM for solving QCQP (6.1)

with m = 1 and n = 1000.

APG-based iALM proposed cutting-plane iALM

out.Iter β #grad #func pres dres compl #grad pres dres compl

trial 1 total running time = 774.2 sec. total running time = 12.4 sec.
1 1 5056 9420 5.13e-02 9.65e-05 2.63e-03 2136 5.13e-02 6.40e-11 2.64e-03
2 10 16802 31298 1.65e-06 9.46e-05 8.46e-08 1434 4.23e-07 9.20e-11 2.17e-08
3 102 55359 103112 5.40e-08 9.77e-05 2.77e-09 1068 4.22e-10 2.63e-10 2.17e-11
4 103 179877 335030 6.51e-09 9.96e-05 3.34e-10 1080 0.00e+00 1.74e-08 4.84e-11
5 104 584145 1087988 0.00e+00 9.95e-05 4.57e-11 1104 2.29e-11 9.23e-09 1.17e-12

trial 2 total running time = 760.0 sec. total running time = 12.1 sec.
1 1 4969 9258 5.78e-02 9.78e-05 3.34e-03 1926 5.78e-02 4.94e-09 3.34e-03
2 10 16466 30672 2.10e-06 9.99e-05 1.21e-07 1440 5.85e-07 3.41e-10 3.38e-08
3 102 54617 101730 4.57e-08 9.85e-05 2.64e-09 1050 0.00e+00 7.90e-09 4.03e-10
4 103 177171 329990 6.44e-09 9.93e-05 3.72e-10 1074 0.00e+00 2.18e-07 1.42e-10
5 104 580377 1080970 0.00e+00 1.00e-04 4.06e-11 1104 2.75e-10 1.84e-09 1.59e-11

trial 3 total running time = 780.9 sec. total running time = 12.4 sec.
1 1 5100 9502 4.37e-02 9.66e-05 1.91e-03 2088 4.37e-02 2.53e-09 1.91e-03
2 10 17035 31732 0.00e+00 9.33e-05 8.08e-08 1428 4.34e-07 7.52e-09 1.90e-08
3 102 56348 104954 1.43e-07 9.79e-05 6.25e-09 1092 0.00e+00 2.75e-13 2.36e-10
4 103 182583 340070 0.00e+00 9.63e-05 5.12e-10 1122 4.33e-09 4.76e-07 1.89e-10
5 104 595012 1108228 1.81e-10 9.99e-05 7.92e-12 1164 0.00e+00 1.88e-09 2.01e-11

Table 2
Results by the APG based first-order iALM and the proposed cutting-plane based first-order iALM for solving QCQP (6.1)

with m = 2 and n = 1000.

APG based iALM proposed cutting-plane iALM

out.Iter β #grad #func pres dres compl #grad pres dres compl

trial 1 total running time = 1348.0 sec. total running time = 51.0 sec.
1 1 5551 10342 4.45e-02 8.71e-05 1.40e-03 3342 4.45e-02 1.06e-09 1.40e-03
2 10 18330 34144 0.00e+00 9.62e-05 6.47e-08 3384 3.19e-07 9.17e-09 9.98e-09
3 102 59680 111160 8.81e-08 9.77e-05 2.71e-09 3522 6.01e-09 9.15e-10 2.44e-10
4 103 194236 361774 0.00e+00 9.94e-05 9.15e-11 3582 1.36e-10 3.84e-09 6.17e-12
5 104 629359 1172200 0.00e+00 9.99e-05 7.65e-12 3678 2.66e-11 1.60e-09 8.13e-13

trial 2 total running time = 1299.4 sec. total running time = 49.5 sec.
1 1 5362 9990 6.60e-02 9.05e-05 3.10e-03 3180 6.60e-02 8.27e-09 3.10e-03
2 10 17646 32870 2.74e-06 9.26e-05 1.34e-07 3282 6.17e-07 2.67e-10 2.91e-08
3 102 57832 107718 1.41e-08 9.82e-05 2.79e-09 3372 5.91e-10 9.05e-11 2.61e-11
4 103 187544 349310 0.00e+00 9.88e-05 2.70e-10 3450 4.97e-10 6.76e-09 2.34e-11
5 104 606432 1129498 9.88e-11 9.97e-05 7.38e-12 3528 1.82e-11 5.23e-09 1.95e-12

trial 3 total running time = 1337.1 sec. total running time = 49.2 sec.
1 1 5464 10180 5.50e-02 9.51e-05 2.25e-03 3156 5.50e-02 6.27e-09 2.25e-03
2 10 18039 33602 1.78e-06 9.90e-05 8.15e-08 3324 5.16e-07 1.76e-10 2.07e-08
3 102 59505 110834 2.88e-08 9.95e-05 1.86e-09 3384 5.93e-09 8.30e-09 2.49e-10
4 103 192301 358170 3.78e-09 9.99e-05 1.45e-10 3504 0.00e+00 1.02e-09 3.00e-11
5 104 627235 1168244 6.81e-11 1.00e-04 9.17e-12 3528 5.23e-11 2.78e-09 1.70e-12

6.2. Comparison to a primal-dual method with line search. In this subsection, we compare the
proposed cutting-plane based iALM to the primal-dual method with line search in [12] on solving (6.1) and

25

Table 3
Results by the APG based first-order iALM and the proposed cutting-plane based first-order iALM for solving QCQP (6.1)

with m = 5 and n = 1000.

APG based iALM proposed cutting-plane iALM

out.Iter β #grad #func pres dres compl #grad pres dres compl

trial 1 total running time = 2833.1 sec. total running time = 156.8 sec.
1 1 5537 10316 7.93e-02 9.91e-05 2.90e-03 6714 7.93e-02 2.91e-09 2.90e-03
2 10 18417 34306 1.12e-06 9.83e-05 4.28e-08 6984 8.93e-07 4.32e-09 3.27e-08
3 102 60058 111864 5.83e-08 9.62e-05 2.25e-09 7158 4.64e-09 1.50e-09 2.02e-10
4 103 195894 364862 3.14e-09 9.88e-05 1.64e-10 7314 4.37e-10 4.28e-09 1.64e-11
5 104 640357 1192684 9.40e-10 9.97e-05 3.51e-11 7614 2.79e-11 8.77e-09 1.74e-12

trial 2 total running time = 2786.0 sec. total running time = 160.7 sec.
1 1 5537 10316 6.77e-02 8.21e-05 2.42e-03 6900 6.77e-02 6.16e-09 2.42e-03
2 10 18170 33846 6.24e-07 9.21e-05 2.43e-08 7110 7.39e-07 2.64e-09 2.75e-08
3 102 59607 111024 2.66e-08 9.73e-05 1.71e-09 7224 2.81e-09 9.46e-09 1.90e-10
4 103 194483 362234 1.21e-08 9.99e-05 3.19e-10 7512 6.61e-10 4.34e-09 2.53e-11
5 104 636109 1184772 7.58e-11 9.94e-05 1.76e-11 7698 3.94e-11 7.84e-09 1.73e-12

trial 3 total running time = 2820.0 sec. total running time = 155.3 sec.
1 1 5595 10424 8.47e-02 8.51e-05 3.26e-03 6594 8.47e-02 9.82e-09 3.26e-03
2 10 18461 34388 7.78e-07 9.55e-05 3.07e-08 6882 8.64e-07 5.52e-09 3.33e-08
3 102 60422 112542 3.78e-09 9.93e-05 4.10e-09 7116 3.42e-09 1.52e-10 1.83e-10
4 103 196869 366678 7.70e-09 9.87e-05 3.05e-10 7260 7.35e-11 5.28e-09 1.91e-11
5 104 640997 1193876 3.63e-10 9.95e-05 1.37e-11 7488 6.86e-11 6.05e-09 2.72e-12

on solving (6.2). The latter is called APDB. It is a single-loop first-order method and can achieve the optimal

complexity result O(ε−
1
2) for solving strongly-convex problems with nonlinear functional constraints.

In the experiment for solving (6.1), we generate three groups of QCQP instances in the same way as
that in the previous test, and in each group, we conduct 10 independent trials. The setting of the proposed
iALM is the same as in the previous test. For APDB, we set γ0 = 1, η = 0.7 and select the best τ0 from
{0.1, 0.01, 0.001}; see Algorithm 2.3 in [12] for the specific meaning of these parameters. In order to have
a fair comparison, we terminiate APDB once it produces a 10−8-KKT point. The results are plotted in
Figure 1. From the figure, we see that when m = 1 or m = 2, the proposed iALM needs fewer gradient
evaluations than APDB to give a solution of similar or higher accuracy, and when m = 5, APDB needs fewer
gradient evaluations. In addition, different from the proposed iALM, APDB needs fewer gradient evaluations
as m increases. Hence, APDB may be even more efficient than the proposed iALM as m further increases.

In the experiment for solving (6.2), we use arcene and spambase datasets, both of which are from UCI
repository1, and we set α = 0.5. Each sample is normalized. In order to achieve at least 90% prediction
accuracy for the positive dataset, we tune the regularization parameters to λ1 = λ2 = 10−3 for the arcene

dataset and to λ1 = λ2 = 10−4 for the spambase dataset. The APDB is applied to a saddle-point problem
formulated by using the ordinary Lagrangian function of (6.2). As the logistic loss function has bounded
gradient and Hessian, we explicitly compute the global Lipschitz constants and adopt constant stepsize for
both APDB and the proposed iALM. We set βk = 10k−1 for iALM and run it to 5 outer iterations. The
target accuracy for a near-KKT point is ε = 10−5. For APDB, we set the maximum number of iterations to
105 and terminate it if an ε-KKT solution is produced. In the saddle-point formulation solved by APDB, we
set an upper bound of its dual variable to the twice of the value of the dual variable returned by the iALM.
This known upper bound benefits APDB. The results are reported in Figure 2, from which we see that the
proposed iALM takes significantly fewer gradient evaluations than APDB to produce a similarly-accurate

1The data can be downloaded from https://archive.ics.uci.edu/ml/datasets.php.

26

https://archive.ics.uci.edu/ml/datasets.php

Fig. 1. Results by the proposed cutting-plane based iALM and the APDB method in [12] on solving QCQP instances of size
n = 1000 and m ∈ {1, 2, 5}. The solid curve in each figure plots the mean of 10 independent trials. First row: m = 1; Second
row: m = 2; Third row: m = 5. First column: primal residual; Second column: dual residual; Third column: complementarity
violation.

2 4 6
number of gradients 104

-15

-10

-5

0

lo
g

10
(p

re
s)

proposed iALM
APDB

2 4 6
number of gradients 104

-10

-5

0

5

lo
g

10
(d

re
s)

proposed iALM
APDB

2 4 6
number of gradients 104

-15

-10

-5

0

5

lo
g

10
(c

om
pl

) proposed iALM
APDB

1 2 3 4
number of gradients 104

-15

-10

-5

0

lo
g

10
(p

re
s)

proposed iALM
APDB

1 2 3 4
number of gradients 104

-15

-10

-5

0

5

lo
g

10
(d

re
s)

proposed iALM
APDB

1 2 3 4
number of gradients 104

-15

-10

-5

0

5

lo
g

10
(c

om
pl

) proposed iALM
APDB

1 2 3
number of gradients 104

-15

-10

-5

0

5

lo
g

10
(p

re
s)

proposed iALM
APDB

1 2 3
number of gradients 104

-10

-5

0

5

lo
g

10
(d

re
s)

proposed iALM
APDB

1 2 3
number of gradients 104

-15

-10

-5

0

5

lo
g

10
(c

om
pl

) proposed iALM
APDB

KKT solution. Moreover, we achieve 91.67% accuracy for the positive samples and 83.33% for the negative
samples in the arcene dataset, and the final obtained solution has only 427 nonzeros out of 10,000. For the
spambase dataset, we achieve 90.89% accuracy for the positive samples and 74.44% for the negative samples,
and the final solution has 51 nonzeros out of 57 because a small regularization parameter is used.

6.3. Comparison to the interior-point method. In this subsection, we compare the proposed
cutting-plane iALM to SDPT3 [36] on solving (6.1). SDPT3 is a primal-dual infeasible interior-point method.
Interior-point methods can give high-accurate solutions to convex problems but do not often have a good
scalability to the problem dimension. In this test, we generate instances of (6.1) with m = 2 and n ∈
{1000, 5000, 10000}. For each (m,n), we generate 5 QCQP instances independently in the same way as
that in previous tests. The parameters of the proposed iALM are set the same as previously, except how
we choose the global smoothness constant of (3.5). Notice that for the QCQP (6.1), the corresponding
subproblem (3.5) has the Hessian matrix H = Q0 +

∑m
i=1 yiQi. A tight smoothness constant is ‖H‖. For

a small n, computing the spectral norm is not so expensive. However, it can be very expensive when n is
big. Hence, we set the global smoothness constant to ‖H‖ for n = 1000 and to ‖Q0‖ +

∑m
i=1 yi‖Qi‖ for

n ∈ {5000, 10000}. Since y changes during the proposed iALM, the former setting needs to compute the
spectral norm of a sequence of n × n matrices, while the latter one only needs to compute {‖Qi‖}0≤i≤m
once at the beginning of the algorithm. This way, we can save the time of computing the spectral norm but

27

Fig. 2. Results by the proposed cutting-plane based iALM and the APDB method in [12] on solving instances of Neyman-
Pearson problem (6.2) with arcene dataset (first row) and spambase dataset (second row). First column: primal residual;
Second column: dual residual; Third column: complementarity violation. †Missing parts on the curves by APDB correspond
to zero residuals, and for spambase, the primal residual by the proposed iALM at the last outer iteration is zero.

2 4 6 8 10
number of gradients 104

10-10

100

lo
g

10
(p

re
s)

proposed iALM
APDB

2 4 6 8 10
number of gradients 104

10-5

100

lo
g

10
(d

re
s)

proposed iALM
APDB

2 4 6 8 10
number of gradients 104

10-10

100

lo
g

10
(c

m
pl

)

proposed iALM
APDB

2 4 6 8 10
number of gradients 104

10-5

100

lo
g

10
(p

re
s)

proposed iALM
APDB

2 4 6 8 10
number of gradients 104

10-5

100

lo
g

10
(d

re
s)

proposed iALM
APDB

2 4 6 8 10
number of gradients 104

10-10

10-5

100

lo
g

10
(c

m
pl

)

proposed iALM
APDB

will obtain larger smoothness constants that lead to smaller stepsize and eventually result in more gradient
evaluations. We call SDPT3 by using CVX [11] and set the precision to “high”.

To compare the performance of the cutting-plane iALM and SDPT3, we report their running time and
violation to the KKT system at the output solution. For the former method, we also report its number of
gradient evaluations. The results are shown in Table 4. From the table, we see that the cutting-plane iALM
can yield similarly or more accurate solutions than SDPT3. When n = 1000, SDPT3 is significantly faster,
but for n ∈ {5000, 10000}, the cutting-plane first-order iALM takes much shorter time than SDPT3.

7. Concluding remarks. We have proposed a cutting-plane based first-order method (FOM) for
solving strongly-convex problems with m functional constraints. If m = O(1), our method can achieve
a complexity result of Õ(

√
κ), where κ denotes the condition number of the underlying problem in some

sense. In general, a complexity result of Õ(m
√
κ) has been established. To give an ε-KKT point, our result

is better than an existing lower bound if m = o(ε−
1
2). We have also extended the idea of the cutting-plane

based FOM to convex and nonconvex cases. Similarly, when m = O(1), we obtained almost the same-order
complexity results (with a difference of a polynomial of | log ε|) as for solving an unconstrained problem.

Acknowledgements. The author would like to thank two anonymous referees for their careful reviews
and helpful comments/suggestions. He also would like to thank Dr. Necdet Serhat Aybat and Dr. Erfan
Yazdandoost Hamedani for sharing their code of the APDB method. The work is partly supported by NSF
grant DMS-2053493.

REFERENCES

[1] K. M. Anstreicher. On vaidya’s volumetric cutting plane method for convex programming. Mathematics of Operations
Research, 22(1):63–89, 1997. 14, 15, 21

28

Table 4
Results by the proposed cutting-plane based first-order iALM and the interior-point method SDPT3 on solving instances

of (6.1). “NaN” means that SDPT3 could not solve that instance successfully.

proposed cutting-plane iALM SDPT3

trial time(h:m:s) #grad pres dres compl time(h:m:s) pres dres compl

problem size: m = 2, n = 1000
1 0:0:35 16776 0.00e+00 1.13e-10 3.42e-12 0:0:11 3.30e-10 1.03e-09 4.12e-11
2 0:0:36 16812 0.00e+00 1.89e-09 8.75e-13 0:0:16 2.14e-10 4.40e-10 9.25e-12
3 0:0:35 17004 4.09e-11 1.19e-09 1.91e-12 0:0:11 0.00e+00 2.04e-09 8.31e-11
4 0:0:36 16698 3.53e-11 2.69e-09 2.27e-12 0:0:11 0.00e+00 8.00e-09 1.61e-08
5 0:0:35 16578 2.32e-11 3.19e-09 2.77e-12 0:0:17 1.58e-09 8.16e-10 9.10e-11

problem size: m = 2, n = 5000
1 0:11:9 21630 2.58e-11 5.85e-10 1.24e-12 0:40:44 0.00e+00 8.26e-09 5.71e-10
2 0:11:11 21642 3.58e-11 9.17e-10 1.63e-12 0:52:23 6.55e-08 1.18e-09 2.84e-09
3 0:11:6 21504 1.95e-11 6.10e-10 7.19e-13 0:50:39 5.45e-08 NaN NaN
4 0:11:12 21678 3.13e-11 4.67e-09 1.04e-12 0:40:38 0.00e+00 1.12e-08 1.59e-09
5 0:11:7 21516 1.99e-11 8.59e-09 9.04e-13 0:36:17 2.71e-08 1.10e-08 1.28e-09

problem size: m = 2, n = 10000
1 1:16:1 22332 0.00e+00 6.32e-10 2.37e-13 5:55:22 2.41e-07 3.10e-08 1.33e-08
2 1:8:33 22296 4.99e-12 6.36e-09 1.30e-12 6:20:3 0.00e+00 4.60e-10 3.19e-09
3 0:58:16 22296 1.73e-11 2.54e-09 7.43e-13 6:13:5 0.00e+00 3.44e-08 8.17e-09
4 0:58:9 22368 2.05e-11 1.14e-08 9.17e-13 7:3:39 0.00e+00 2.16e-08 7.70e-09
5 1:15:19 22182 7.95e-12 1.04e-08 1.30e-12 8:31:16 0.00e+00 3.70e-08 1.48e-09

[2] A. Y. Aravkin, J. V. Burke, D. Drusvyatskiy, M. P. Friedlander, and S. Roy. Level-set methods for convex optimization.
Mathematical Programming, 174(1-2):359–390, 2019. 3

[3] N. S. Aybat and G. Iyengar. An augmented lagrangian method for conic convex programming. arXiv preprint
arXiv:1302.6322, 2013. 2

[4] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on
imaging sciences, 2(1):183–202, 2009. 6

[5] D. P. Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999. 9
[6] D. Boob, Q. Deng, and G. Lan. Stochastic first-order methods for convex and nonconvex functional constrained optimiza-

tion. Mathematical Programming, pages 1–65, 2022. 2
[7] C. Cartis, N. I. Gould, and P. L. Toint. On the evaluation complexity of composite function minimization with applications

to nonconvex nonlinear programming. SIAM Journal on Optimization, 21(4):1721–1739, 2011. 2
[8] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal

of Mathematical Imaging and Vision, 40(1):120–145, 2011. 3
[9] Y. Chen, G. Lan, and Y. Ouyang. Accelerated schemes for a class of variational inequalities. Mathematical Programming,

165(1):113–149, 2017. 3
[10] R. Gandy. Portfolio optimization with risk constraints. PhD thesis, Universität Ulm, 2005. 1
[11] M. Grant, S. Boyd, and Y. Ye. CVX: Matlab software for disciplined convex programming, 2008. 28
[12] E. Y. Hamedani and N. S. Aybat. A primal-dual algorithm with line search for general convex-concave saddle point

problems. SIAM Journal on Optimization, 31(2):1299–1329, 2021. 3, 25, 26, 27, 28
[13] L. T. K. Hien, R. Zhao, and W. B. Haskell. An inexact primal-dual smoothing framework for large-scale non-bilinear

saddle point problems. arXiv preprint arXiv:1711.03669v3, 2017. 3
[14] W. Kong, J. G. Melo, and R. D. Monteiro. Complexity of a quadratic penalty accelerated inexact proximal point method

for solving linearly constrained nonconvex composite programs. SIAM Journal on Optimization, 29(4):2566–2593,
2019. 2

[15] G. Lan and R. D. Monteiro. Iteration-complexity of first-order augmented lagrangian methods for convex programming.
Mathematical Programming, 155(1-2):511–547, 2016. 2, 21

[16] F. Li and Z. Qu. An inexact proximal augmented lagrangian framework with arbitrary linearly convergent inner solver
for composite convex optimization. Mathematical Programming Computation, 13(3):583–644, 2021. 2, 8

[17] Z. Li, P.-Y. Chen, S. Liu, S. Lu, and Y. Xu. Rate-improved inexact augmented lagrangian method for constrained
nonconvex optimization. In International Conference on Artificial Intelligence and Statistics, pages 2170–2178.

29

PMLR, 2021. 2, 3
[18] Z. Li and Y. Xu. Augmented lagrangian–based first-order methods for convex-constrained programs with weakly convex

objective. INFORMS Journal on Optimization, 3(4):373–397, 2021. 2
[19] Q. Lin, R. Ma, and Y. Xu. Complexity of an inexact proximal-point penalty method for constrained smooth non-convex

optimization. Computational Optimization and Applications (online first), 2022. 2, 3, 22
[20] Q. Lin, R. Ma, and T. Yang. Level-set methods for finite-sum constrained convex optimization. In International Conference

on Machine Learning, pages 3112–3121, 2018. 3
[21] Q. Lin, S. Nadarajah, and N. Soheili. A level-set method for convex optimization with a feasible solution path. SIAM

Journal on Optimization, 28(4):3290–3311, 2018. 3
[22] Q. Lin and L. Xiao. An adaptive accelerated proximal gradient method and its homotopy continuation for sparse opti-

mization. Computational Optimization and Applications, 60(3):633–674, 2015. 1, 2, 5
[23] Z. Lu and Z. Zhou. Iteration-complexity of first-order augmented lagrangian methods for convex conic programming.

arXiv preprint arXiv:1803.09941, 2018. 2, 8
[24] J. G. Melo, R. D. Monteiro, and H. Wang. Iteration-complexity of an inexact proximal accelerated augmented la-

grangian method for solving linearly constrained smooth nonconvex composite optimization problems. arXiv preprint
arXiv:2006.08048, 2020. 2

[25] R. D. Monteiro and B. F. Svaiter. On the complexity of the hybrid proximal extragradient method for the iterates and
the ergodic mean. SIAM Journal on Optimization, 20(6):2755–2787, 2010. 3

[26] I. Necoara and V. Nedelcu. Rate analysis of inexact dual first-order methods application to dual decomposition. IEEE
Transactions on Automatic Control, 59(5):1232–1243, 2014. 2

[27] A. Nedić and A. Ozdaglar. Approximate primal solutions and rate analysis for dual subgradient methods. SIAM Journal
on Optimization, 19(4):1757–1780, 2009. 2

[28] A. Nedić and A. Ozdaglar. Subgradient methods for saddle-point problems. Journal of optimization theory and applica-
tions, 142(1):205–228, 2009. 2

[29] A. Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequalities with lipschitz continuous mono-
tone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 15(1):229–251,
2004. 3

[30] Y. Nesterov. Introductory lectures on convex optimization: A basic course. Kluwer Academic Publisher, 2004. 3
[31] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming, 140(1):125–161, 2013.

1, 2, 5
[32] Y. Ouyang and Y. Xu. Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems.

Mathematical Programming, (184):1–35, 2021. 1, 8
[33] P. Rigollet and X. Tong. Neyman-pearson classification, convexity and stochastic constraints. Journal of Machine Learning

Research, 12(Oct):2831–2855, 2011. 1
[34] R. T. Rockafellar. Convex analysis. Number 28. Princeton university press, 1970. 9, 22
[35] M. F. Sahin, A. Alacaoglu, F. Latorre, V. Cevher, et al. An inexact augmented lagrangian framework for nonconvex

optimization with nonlinear constraints. In Advances in Neural Information Processing Systems, pages 13965–13977,
2019. 2

[36] K.-C. Toh, M. J. Todd, and R. H. Tütüncü. On the implementation and usage of sdpt3–a matlab software package for
semidefinite-quadratic-linear programming, version 4.0. In Handbook on semidefinite, conic and polynomial optimiza-
tion, pages 715–754. Springer, 2012. 27

[37] P. M. Vaidya. A new algorithm for minimizing convex functions over convex sets. Mathematical programming, 73(3):291–
341, 1996. 14

[38] Y. Xu. Primal-dual stochastic gradient method for convex programs with many functional constraints. SIAM Journal on
Optimization, 30(2):1664–1692, 2020. 4

[39] Y. Xu. First-order methods for constrained convex programming based on linearized augmented lagrangian function.
INFORMS Journal on Optimization, 3(1):89–117, 2021. 2

[40] Y. Xu. Iteration complexity of inexact augmented lagrangian methods for constrained convex programming. Mathematical
Programming, (185):199–244, 2021. 2, 7

[41] Y. Xu and W. Yin. A block coordinate descent method for regularized multiconvex optimization with applications to
nonnegative tensor factorization and completion. SIAM Journal on Imaging Sciences, 6(3):1758–1789, 2013. 6

[42] H. Yu and M. J. Neely. A primal-dual type algorithm with the O(1/t) convergence rate for large scale constrained convex
programs. In Decision and Control (CDC), 2016 IEEE 55th Conference on, pages 1900–1905. IEEE, 2016. 2

[43] M. B. Zafar, I. Valera, M. G. Rodriguez, and K. P. Gummadi. Fairness constraints: Mechanisms for fair classification.
arXiv preprint arXiv:1507.05259, 2015. 1

30

