
REDUCING THE COMPLEXITY OF TWO CLASSES OF
OPTIMIZATION PROBLEMS BY INEXACT ACCELERATED

PROXIMAL GRADIENT METHOD∗

QIHANG LIN† AND YANGYANG XU‡

Abstract. We propose a double-loop inexact accelerated proximal gradient (APG) method for
a strongly convex composite optimization problem with two smooth components of different smooth-
ness constants and computational costs. Compared to APG, the inexact APG can reduce the time
complexity for finding a near-stationary point when one smooth component has higher computational
cost but a smaller smoothness constant than the other. The strongly convex composite optimiza-
tion problem with this property arises from subproblems of a regularized augmented Lagrangian
method for affine-constrained composite convex optimization and also from the smooth approxima-
tion for bilinear saddle-point structured non-smooth convex optimization. We show that the inexact
APG method can be applied to these two problems and reduce the time complexity for finding a
near-stationary solution. Numerical experiments demonstrate significantly higher efficiency of our
methods over an optimal primal-dual first-order method by Hamedani and Aybat [SIAM J. Optim.
31 (2021), pp. 1299–1329] and the gradient sliding method by Lan et al. [arXiv2101.00143, 2021].

Keywords: first-order method, constrained optimization, saddle-point non-smooth optimization

1. Introduction. We consider composite optimization in the form of

(1.1) F ∗ = min
x∈Rn

{F (x) = g(x) +H(x)} with H(x) = h(x) + r(x),

where g is Lg-smooth and µ-strongly convex with µ > 0, h is convex and Lh-smooth,
and r is closed convex with an easy proximal mapping and an easy projection onto
∂r(·). This problem arises in many applications, e.g., sparse regression [65,82], multi-
task learning [15], matrix completion [8] and sparse inverse covariance estimation [16].

Besides (1.1) itself, we also study its application in the numerical schemes to solve
two classes of convex problems. One is affine-constrained composite optimization:

(1.2) min
x∈Rn

f(x) + r(x), s.t. Ax = b,

and the other is bilinear saddle-point structured non-smooth optimization:

(1.3) min
x∈Rn

{
f(x) + r(x) + max

y∈Rm

[
〈y,Ax〉 − φ(y)

]}
.

In both problems, we assume that f is Lf -smooth µ-strongly convex with µ > 0 while r
is similar to that in (1.1). Also, φ is closed convex, has a bounded domain, and admits
an easy proximal mapping. For simplicity, we only consider equality constraints in
(1.2) in this section, but we will consider both equality and inequality constraints in
the main body of the paper as shown in (5.1). The applications of (1.2) can be found
in linearly constrained LASSO problems [17, 30] and shape-restricted nonparametric
regression [11], and problem (1.3) arises in overlapping group LASSO [10,29,81], fused
LASSO [10,66] and robust principal component analysis [7].

Most of the existing works target at an ε-optimal solution of (1.1), namely, a
solution x̄ satisfying F (x̄) − F ∗ 6 ε. In contrast, we aim at finding an ε-stationary
solution of (1.1), namely, a solution x̄ satisfying ‖ξ̄‖ 6 ε for some ξ̄ ∈ ∂F (x̄). It
is easy to obtain an O(

√
ε)-stationary solution (see (3.15) below) from an ε-optimal

solution, which, however, may not be a near-stationary solution. For example, x̄ = ε

∗This work is partly supported by NSF grants DMS-2053493 and DMS-2208394 and the ONR
award N00014-22-1-2573.
†qihang-lin@uiowa.edu, Department of Business Analytics, University of Iowa, Iowa City
‡xuy21@rpi.edu, Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy

1

qihang-lin@uiowa.edu
xuy21@rpi.edu

is an ε-optimal solution of minx |x|, but it is not a near-stationary solution for any
ε > 0. On the contrary, an ε-stationary point x̄ of (1.1) is also an ε‖x̄− x∗‖-optimal
solution by F (x̄) − F (x∗) 6 〈ξ, x̄ − x∗〉 6 ‖ξ‖ · ‖x̄ − x∗‖ for any ξ ∈ ∂F (x̄), where
x∗ is one minimizer. In addition, an ε-stationary solution can be verified in practice
more easily than an ε-optimal solution. For this reason, we also focus on computing
ε-stationary solutions (defined later in Definitions 5.1 and 6.1) of (1.2) and (1.3).

1.1. Composite subproblems/approximation. Both of (1.2) and (1.3) can
be solved by numerical procedures that solve instances of (1.1) as we discuss below.

We consider solving (1.2) by an inexact regularized augmented Lagrangian method
(iRALM), which performs the following update in the kth main iteration

(1.4) x(k+1) ≈ arg min
x∈Rn

f(x) + r(x) + 〈λ(k),Ax−b〉+ βk
2 ‖Ax−b‖2 + ρk

2 ‖x−x(k)‖2.

Here x(k) is the main iterate, λ(k) is the Lagrange multiplier, βk > 0 is a penalty
parameter, and ρk > 0 is a regularization parameter. It is easy to see that the
problem in (1.4) is an instance of (1.1) with

(1.5) g(x) = f(x) + ρk
2 ‖x− x(k)‖2 and h(x) = 〈λ(k),Ax− b〉+ βk

2 ‖Ax− b‖2

and the smoothness constants are Lg = Lf + ρk and Lh = βk‖A‖2.
For (1.3), we use the smoothing technique by [54], which approximates (1.3) by

(1.6) min
x∈Rn

{
f(x) + r(x) + max

y∈Rm

[
〈y,Ax〉 − φ(y)− ρ

2‖y − y(0)‖2
]}

and solves (1.6) using a smooth optimization method. Here, ρ > 0 is a smoothing
parameter, and y(0) ∈ dom(φ). Again, we can view (1.6) as an instance of (1.1) with

(1.7) g(x) = f(x) and h(x) = max
y∈Rm

[
〈y,Ax〉 − φ(y)− ρ

2‖y − y(0)‖2
]
,

and the smoothness constants Lg = Lf and Lh = ‖A‖2/ρ.
We consider solving (1.2) and (1.3) by gradient-based methods which only need

to query (f,∇f) and (A(·),A>(·)) and use the proximal mappings of r and φ. We
are interested in the oracle complexity of the studied methods, which is defined as the
numbers of queries that the methods make to (f,∇f) and (A(·),A>(·)), denoted by
Qf and QA respectively, until an ε-stationary point is found. Similarly, we define the
oracle complexity of a method for (1.1) as the numbers of queries it makes to (g,∇g)
and (h,∇h), denoted by Qg and Qh, respectively, until an ε-stationary point is found.
In contrast to oracle complexity, we define the time complexity or cost of a numerical
procedure as the total number of arithmetic operations it performs. Additionally,
we focus on a practical scenario where the time complexity for querying (f,∇f) is
significantly higher than (A(·),A>(·)). This scenario arises from many applications
in statistics and machine learning, e.g., linearly constrained LASSO problems [17,30],
where querying (f,∇f) requires processing a large amount of data while querying
(A(·),A>(·)) does not involve any data and can be relatively easy.

1.2. Contributions. Our main contribution is to show that, when the time
complexity of querying (f,∇f) is significantly higher than (A(·),A>(·)), the known
time complexity in literature for finding ε-statioanry points of (1.2) and (1.3) can
be further reduced if we solve (1.4) and (1.6) using an inexact accelerated proximal
gradient (iAPG) method, which queries (f,∇f) significantly fewer than (A(·),A>(·)).

Our iAPG is a double-loop variant of the APG [2,52,54,55,70]. When applied to
(1.1), the APG treats G := g + h as a whole and solves (1.1) by

(1.8) x(k+1) = arg min
x∈Rn

〈
∇G(y(k)),x− y(k)

〉
+ 1

2ηk
‖x− y(k)‖2 + r(x), for k > 0,

2

where y(k) ∈ Rn is an auxiliary iterate and ηk > 0 is a step length parameter. By the
assumption made on r, (1.8) can be solved easily, e.g., in a closed form. When µ > 0,
it is known (see e.g., [52]) that the APG finds an ε-optimal solution for (1.1) with

Qg = Qh = O
(√

Lg+Lh
µ ln

(
1
ε

))
. However, according to the instantizations in (1.5)

and (1.7), quering (g,∇g) has significantly higher time complexity than (h,∇h) in
both instances since the former requires quering (f,∇f) while the latter only requires
quering (A(·),A>(·)). Given that, a potential strategy to reduce the time complexity
for solving (1.1), and thus (1.2) and (1.3), is to query (g,∇g) and (h,∇h) in different
frequencies so as to reduce Qg, even if doing so may slightly increase Qh.

To implement this strategy, one technique is to separate g and h by solving the
following proximal mapping subproblem in the kth iteration

(1.9) x(k+1) = arg min
x∈Rn

〈
∇g(y(k)),x− y(k)

〉
+ 1

2ηk
‖x− y(k)‖2 + h(x) + r(x).

Unlike (1.8), (1.9) typically cannot be solved explicitly. A practical solution is to
use an iterative method to solve (1.9) inexactly to a certain precision. This requires
a double-loop implementation. Note that (1.9) itself is a strongly convex instance
of (1.1) and thus can be solved inexactly by the APG in oracle complexity with
logarithmic dependency on the precision. By choosing an appropriate precision for
solving (1.9) in each iteration, we show that, when µ > 0, our iAPG can find an
ε-stationary solution of (1.1) with oracle complexity1

(1.10) Qg = O
(√

Lg
µ ln

(
1
ε

))
and Qh = Õ

(√
Lg+Lh
µ ln

(
1
ε

))
.

The iAPG has lower time complexity than the APG when Lh is significantly larger
than Lg and querying (g,∇g) is much more costly than (h,∇h).

According to (1.5), the iAPG has lower time complexity than the APG for solving
(1.4) when βk is much larger than ρk, which is indeed the case in the iRALM. As a
consequence, we show that the iRALM, in which (1.4) is solved by the iAPG, finds
an ε-stationary point of (1.2) with oracle complexity2

(1.11) Qf = O
(√

Lf
µ ln2

(
1
ε

))
and QA = Õ

(√
Lf
µ ln

(
1
ε

)
+ ‖A‖√

µε

)
.

Without the affine constraint Ax = b, it is shown by [51,52] that any gradient-based

method has to query (f,∇f) at least Ω
(√

Lf
µ ln

(
1
ε

))
times to find an ε-optimal point

of (1.2). With Ax = b, it is shown by [57] that any gradient-based method needs to

query (A(·),A>(·)) at least O(‖A‖√µε) times. In either case, the oracle complexity of

the iRALM matches the corresponding lower bound up to logarithmic factors.
Similarly, according to (1.7), the iAPG has lower time complexity than the APG

when ρ is small, which is true for the smoothing method. In fact, to obtain an ε-
optimal point of (1.3) by solving (1.6), one needs to set ρ = Θ(ε). In this case, we
show that, when µ > 0, the smooothing method, where (1.6) is solved by the iAPG,
finds an ε-stationary point of (1.3) with the same oracle complexity as in (1.11). This
complexity matches the lower bound [57] up to logarithmic factors.

Summary of contributions. We summarize our contributions mentioned above.
• We present an iAPG method for solving (1.1). It is a double-loop method where

the inner iterations are terminated using a computable stopping criterion based on
the stationarity measure of the solution. We prove the oracle complexity of the

1Here and in the rest of the paper, Õ suppresses some logarithmic terms.
2The factor ln2

(
1
ε

)
in Qf can be reduced to ln 1

ε
if β0 = Θ(1

ε
) and ρ0 = Θ(ε); see Remark 1.

3

proposed iAPG is given in (1.10). When evaluating (g,∇g) has significantly higher
cost than (h,∇h) but Lg is much smaller than Lh, the iAPG is superior to the APG
for solving (1.1). Compared to the existing iAPGs, e.g. [35], our analysis focuses
on the strongly-convex case which has important applications in (1.2) and (1.3).
Moreover, our method includes a line search scheme on the step length parameter
to improve the practical performance while other iAPGs do not.

• Applying the proposed iAPG to the subproblems of the iRALM for (1.2), we derive
in (1.11) the oracle complexity of the iRALM for finding an ε-stationary solution.
This complexity is better than existing ones, e.g., [20, 73], when quering (f,∇f) is
significantly more costly than (A(·),A>(·)). The complexity in [41] is similar to
ours3. However, the inner loop of their method requires a pre-determined number
of iterations, which is often conservative and yields poor practical performance; see
the numerical results in Section 7. Additionally, we show that the iAPG combined
with the smoothing technique [54] can find an ε-stationary solution of (1.3) with
oracle complexity in (1.11), which is also better than existing ones.

1.3. Notation. x�y denotes the component-wise product of two vectors x and
y. For any number sequence {ai}i>0, we define

∑k2

i=k1
ai = 0 and

∏k2

i=k1
ai = 1 if k1 >

k2. The proximal mapping of a function r is proxr
(
z
)

:= arg minx

{
1
2‖x− z‖2 + r(x)

}
.

The distance of a point z to a set S is defined as dist
(
z,S

)
:= minx∈S ‖x− z‖.

2. Literature review. The APG methods [2,52,54,55,70] are optimal gradient-
based methods for (1.1). However, the APGs cannot be directly applied to (1.2) due
to the affine constraints or to (1.3) due to the sophisticated non-smooth term. The
iAPG performs the similar updates as an APG except that the proximal mapping
subproblem (1.9) is solved inexactly by another optimization algorithm, making the
iAPG a double-loop algorithm. Different iAPGs have been studied in literature based
on different inexactness criteria when solving the subproblems [4, 31,34,35,63,71].

2.1. Related iAPGs. The iAPG in [63] assumes that an εk-optimal solution
of (1.9) can be found while the iAPG by [31] requires a solution of (1.9) that satisfies
an inexact criterion based on the O(ε2

k/k
2)-subgradient of H. Both papers assume

the summability of {εk}. They analyze the number of outer iterations for finding an
ε-optimal solution of (1.1) but not the oracle complexity for solving (1.9). In contrast,
we show the total oracle complexity for finding an ε-stationary solution of (1.1), which
can be verified more easily than an ε-optimal solution.

The iAPG by [31] can be directly applied to (1.2) by viewing r in (1.1) as an
indicator function of the constraint set of (1.2). This way, (1.9) becomes a quadratic
program with affine constraints. Then, an inexact semismooth Newton-conjugate gra-
dient method is applied to compute an inexact solution to (1.9) that approximately
satisfies the primal-dual optimality conditions. However, they only analyze the num-
ber of outer iterations but not the total oracle complexity.

When (1.1) is convex but not strongly convex, the iAPG by [71] minimizes the
duality gap of (1.9) using an APG method to find an approximate solution of (1.9)
satisfying an inexact condition defined with the εk-subdifferential ofH. Choosing εk =
1/kq, it can find an ε-optimal solution of (1.1) with oracle complexity Qg = O(1√

ε
)

and Qh = O(1
εq) for q arbitrarily close to 3

2 . Under the same setting, the iAPG by [4]
assumes an approximate solution to (1.9) that satisfies either an inexact relative rule

3The complexity in [41] is lower than that in (1.11) by a logarithmic factor. However, [41] targets
an ε-optimal solution which is hard to verify.

4

or an inexact extra-step relative rule. With oracle complexity Qg = O
(L2/3

g

ε2/3

)
, it finds

a solution to (1.1) whose ε-subgradient has a norm no greater than ε, which is weaker
than an ε-statioanry point. They do not analyze the complexity for computing the
inexact solution to (1.9) so Qh is unknown.

The inner accelerated inexact composite gradient (IA-ICG) method and the dou-
bly accelerated inexact composite gradient (DA-ICG) proposed by [35] can be applied
to (1.1). Both methods apply a relaxed accelerated gradient (R-ACG) algorithm to
find a solution of (1.9) satisfying two error inequalities (see Problem B in [35]). When
(1.1) is convex but not strongly convex, the oracle complexities of the IA-ICG method

and the DA-ICG method for finding an ε-stationary point of (1.1) are Qg = O
(Lg
ε2

)
,

Qh = O
(√Lg+Lh

√
Lg

ε2

)
and Qg = O

(L2/3
g

ε2/3

)
, Qh = O

(√Lg+LhL
1/6
g

ε2/3

)
, respectively, the

latter of which is the best result in literature.

In contrast to [4, 31, 35, 71], our work focuses on the case when (1.1) is strongly
convex. Our result is the best in the literature and complements the results by [35].
Moreover, our main studies are the applications of the proposed iAPG in (1.2) and
(1.3), which are not studied in [4,31,35,71]. Additionally, our method includes a line
search scheme for the step length parameter while those works do not consider.

2.2. Related methods for solving (1.2). The augmented Lagrangian method
(ALM) [27,60,61] and its variants [5,21–25,28,32,33,39,49,58,62,73–76] can be applied
to (1.2). The methods in [22, 33] require exact solution of ALM subproblems, i.e.,
(1.4) with ρk = 0, which is not practical for many applications. Inexact (regularized)
ALMs are studied by [39,49,58,75] where (regularized) ALM subproblems are solved
inexactly by APG. When µ = 0, these methods have oracle complexity Qf = QA =
O(1

ε) and, when µ > 0, the method by [75] has oracle complexity Qf = QA = O(1√
ε
).

An accelerated linearized ALM is studied by [73] where f in (1.2) is linearized in the
ALM subproblem. If the augmented term is also linearized so that the subproblem
can be solved exactly, the method by [73] has the same oracle complexity as [75] in
both the cases when µ = 0 and when µ > 0. If the augmented term is not linearized,
the methods by [5, 23, 25, 73] only need O(1√

ε
) iterations even when µ = 0, but the

ALM subproblem becomes challenging to solve exactly. The linearized ALM method
is analyzed in a unified framework together with other variants of the ALM by [62]
and is generalized for nonlinear constraints by [74]. The same complexity as [75]
is achieved in [62, 74]. A cutting-plane based ALM is proposed by [76] which can

find an ε-stationary point for (1.2) with oracle complexity Qf = QA = Õ(m√
ε
) when

µ = 0 and Qf = QA = Õ(m ln(1
ε)) when µ > 0, where m is the number of constraints.

Hence, its complexity is better than ours only when m = o(ε−
1
2). A method similar to

ALM is studied in [46] for decentralized distributed optimization with the consensus
constraint, which is a special case of the affine constraints in (1.2).

The (linearized) Bregman methods [79, 80] and their accelerated variants [28, 33]
are equivalent to gradient-based methods applied to the Lagrangian dual problem of
(1.2). Similar techniques are explored in [14,18]. However, these methods require easy
evaluation of the proximal mapping of f , which limits their applications. For (1.2)
with a strongly convex but not necessarily smooth objective, a dual ε-optimal solution
can be found by an accelerated Uzawa method [64] or an inexact ALM method [32]
within O(1√

ε
) main iterations. However, the method in [64] requires solving a La-

grangian subproblem exactly and is thus impractical for general f . Although the
method by [32] only needs to solve ALM subproblems inexactly, the authors only

5

analyze the total number of main iterations but not the overall oracle complexity.

Penalty methods [14, 18, 38, 44] are also classical approaches for (1.2), where the
affine constraints are moved to the objective function through a penalty term and the
unconstrained penalty problem is then solved by another optimization algorithm like
the APG. The primal method in [14,18] requires r = 0 and A is positive semidefinite
while the dual method in [14,18] requires an easy evaluation of the convex conjugate
function of f , which limits the applications. When µ = 0, [38] shows that, if the
penalty parameter is large enough, the penalty method finds an (ε, ε)-primal-dual
solution of (1.2) (see Def. 1 in [38]) with oracle complexity Qf = QA = O(1

ε). The
penalty method by [44] solves a sequence of unconstrained penalty problems with
increasing penalty parameters and only performs one APG iteration on each penalty
problem. It has oracle complexity Qf = QA = O(1

ε) when µ = 0 and Qf = QA =
O(1√

ε
) when µ > 0. The complexity results in [38, 44] are higher than ours in both

cases. The penalty method has also been applied to distributed optimization problems
in [45] with consensus constraint, which is a special affine constraint.

By Lagrange multipliers, constrained optimization can be formulated as a min-
max problem to which the primal-dual methods [67–69, 72, 83], mostly based on
smoothing technique [54], can be applied. However, the methods by [67,69,72] require
a closed-form solution of proxηf while the method by [83] requires a closed-form so-
lution of the convex conjugate function of f , and thus they have limited applications.
The authors of [68] extend the algorithm and analysis in [67] by allowing proxηf to be
evaluated inexactly. However, they do not include the oracle complexity for inexactly
evaluating the proximal mapping in their complexity analysis.

2.3. Related methods for solving (1.3). Smoothing techniques [1,3,54] are a
class of effective approaches for solving the structured problem (1.3). They construct
close approximation of (1.3) by one or a sequence of smooth problems, which are then
solved by smooth optimization methods such as the APG. When µ = 0, the methods

by [1, 3, 54] find an ε-optimal solution with complexity Qf = QA = O(‖A‖ε +
√

Lf
ε).

When µ > 0, the adaptive smoothing method by [1] finds an ε-optimal solution with

Qf = QA = O(
√

Lf
µ ln(1

ε)+ ‖A‖√µε), which is higher than our complexity given in (1.11)

when the query to (f,∇f) is significantly more costly than (A(·),A>(·)).
In the literature, (1.3) has also been studied as a bilinear saddle point problem [6,

9, 12, 26, 53, 84, 85]. The methods in [6, 9, 53] require a closed form of the proximal
mapping of f + r and thus may not be applicable to (1.3). When µ = 0, the methods
by [12,26,84,85] find an ε-saddle-point (see Def. 3.1 in [26]) or an ε-optimal solution
with the same oracle complexity as the smoothing methods mentioned above. When
µ > 0, the method by [85] finds an ε-optimal solution with the same oracle complexity
as the smoothing method [1]. Problem (1.3) has also been studied as a variational
inequality [13, 50, 70]. In particular, when µ = 0, the mirror-prox methods in [50, 70]

find an ε-optimal solution of (1.3) with complexity Qf = QA = O(
Lf+‖A‖

ε), which is

later reduced to Qf = QA = O(
√

Lf
ε + ‖A‖

ε) by [13].

For all the methods we discussed above for solving (1.2) and (1.3), the oracle
complexity is essentially the number of iterations the algorithms perform to find
the desired solution. Since all of those methods always evaluate both (f,∇f) and
(A(·),A>(·)) in each iteration, Qf and QA are the same for them. When the eval-
uation cost of (f,∇f) is significantly higher than that of (A(·),A>(·)), it will be
more efficient to query (f,∇f) less frequently than (A(·),A>(·)) without compro-

6

mising the solution quality. This actually can be achieved using the gradient sliding
techniques [36,37,40,42,43,56], which compute the gradient of one (more expensive)
component of the objective function once in each outer iteration and process the
remaining components in each inner iteration. The iAPG in this paper utilizes a sim-
ilar double-loop technique to differentiate the frequencies of evaluating (f,∇f) and
(A(·),A>(·)) and thus reduce Qf . Although the idea behind the iAPG is similar to
the gradient sliding techniques, such a technique has not be studied for problem (1.2)
under an iRALM framework. Although (1.3) has been studied by [36,40], we consider
the case of µ > 0, which is not covered in [36] and for which [40] needs to apply
the sliding method for convex cases in multiple stages. Moreover, except [42] which
terminates the inner loop based on a computable duality gap4, the existing gradient
sliding techniques must run the inner loop for a pre-determined number of iterations
which depends on some unknown parameters of the problem. On the contrary, we
terminate our inner loop based on a computable stationarity measure, which makes
our method more efficient in practice as we demonstrate in Section 7.

3. Inexact Accelerated Proximal Gradient Method with Line Search.
In this section, we consider (1.1) where g is µ-strongly convex with5 µ > 0 and Lg-
smooth (i.e. ∇g is Lg-Lipschitz continuous), h is convex and Lh-smooth, and r is
closed convex and allows easy computation of proxηr

(
z
)

and dist(z′, ∂r(z)) for any
z′, z ∈ Rn and η > 0. We assume that (g,∇g) is significantly more costly to query
than (h,∇h) and Lg is significantly smaller than Lh. We propose an iAPG for (1.1)
in Alg. 1, which is a modification of the APG in [52, Alg. 2.2.19], by including a line
search procedure (in Alg. 2) for the step length parameter ηk and solving the following
proximal mapping subproblem inexactly

(3.1)
x(k+1) ≈ x

(k+1)
∗ :=

arg min
x∈Rn

{
Φ(x; y(k), ηk) :=

〈
∇g(y(k)),x− y(k)

〉
+

1

2ηk
‖x− y(k)‖2 + h(x) + r(x)

}
.

The APG requires x(k+1) = x
(k+1)
∗ , while our iAPG only needs x(k+1) to be an εk-

stationary point, i.e., a point satisfying (3.2). Our line search procedure follows [47].
It can be shown that x(k+1) produced by the iAPG is an ε-optimal solution of

(1.1) if k is large enough and εk decreases to zero in an appropriate rate. To generate
an ε-stationary solution of (1.1), we just need to perform a proximal gradient step
from x(k+1) using a separate step length η̃k that can also be searched by the standard
scheme as in [2]. We present this procedure in Alg. 3 where G := g + h.

Algorithm 1: x̃(k+1) = iAPG(g, h, r,x(0), η−1, γ0, µ, L, (εk)k>0, ε) for (1.1)

1 Inputs: The three components of (1.1): g, h and r, x(0) ∈ dom(r), η−1 6 1
L

,

γ0 ∈ [µ, 1
η−1

], µ > 0, L ∈ [µ,Lg], εk > 0, γdec ∈ (0, 1), γinc ∈ [1,+∞), ∀k > 0, ε > 0

2 η̃0 ← η−1, z(0) ← x(0) and set global parameters γdec ∈ (0, 1) and γinc ∈ [1,+∞)
3 for k = 0, 1, . . . , do

4 (x(k+1), γk+1, ηk, αk) = LineSearch(x(k), z(k), γk, ηk−1, µ, L, εk).

5 z(k+1) = x(k) + 1
αk

(
x(k+1) − x(k)

)
.

6 (x̃(k+1), η̃k+1) = SeekStationary(x(k+1), η̃k).

7 if dist
(
0, ∂F (x̃(k+1))

)
6 ε then Return: x̃(k+1)

4The method in [42] is a conditional gradient method that assumes a linear optimization oracle,
which is different from our setting.

5Results for the case of µ = 0 can be found in the longer axXiv version [48].

7

Algorithm 2: (x(k+1), γk+1, ηk, αk) = LineSearch(x(k), z(k), γk, ηk−1, µ, L, εk)

1 Inputs: x(k), z(k), γk > 0, ηk−1 > 0, L ∈ [µ,Lg], εk > 0
2 ηk ← min

{
1

γdecL
,
γincηk−1

γdec

}
3 repeat

4 ηk ← γdecηk; find αk > 0 and γk+1 that satisfy γk+1 =
α2
k
ηk

= (1− αk) γk + αkµ.

5 Let y(k) = 1
αkγk+γk+1

(
αkγkz

(k) + γk+1x
(k)
)

; find x(k+1) such that

dist
(
0,∇g(y(k)) + 1

ηk
(x(k+1) − y(k)) + ∂H(x(k+1))

)
6 εk(3.2)

6 until g(x(k+1)) 6 g(y(k)) + 〈∇g(y(k)),x(k+1) − y(k)〉+ 1
2ηk
‖x(k+1) − y(k)‖2

7 Return: (x(k+1), γk+1, ηk, αk)

Algorithm 3: (x̃(k+1), η̃k+1) = SeekStationary(x(k+1), η̃k)

1 Inputs: x(k+1), η̃k > 0

2 η̃k+1 ← η̃k
γdec

3 repeat

4 η̃k+1 ← γdecη̃k+1 and x̃(k+1) ← proxη̃k+1r

(
x(k) − η̃k+1∇G(x(k))

)
.

5 until G(x̃(k+1)) 6 G(x(k)) +
〈
∇G(x(k)), x̃(k+1) − x(k)

〉
+ 1

2η̃k+1
‖x̃(k+1) − x(k)‖2

6 Return: x̃(k+1) and η̃k+1.

3.1. Convergence analysis for iAPG. In this subsection, we analyze the con-
vergence rate of the proposed iAPG. The analysis also applies to APG by setting
εk = 0. The technical lemmas below are needed.

Lemma 3.1. Let {(ηk, η̃k, αk, γk)} be generated from Alg. 1. It holds that

(3.3) γdec

Lg
< ηk 6 1

L ,
γdec

Lg+Lh
< η̃k 6 1

L , αk 6 1 and γk > µ, for any k > 0.

Proof. From Lines 2 and 4 of Alg. 2, we have ηk 6 1
L in Alg. 1. In addition, the

condition in Line 6 of Alg. 2 will hold and Alg. 2 will stop if ηk 6 1
Lg

. Given Line 4

of Alg. 2, we have ηk >
γdec

Lg
in Alg. 1. Since η̃0 6 1

L , γdec

Lg+Lh
< η̃k 6 1

L hold similarly.

Solving αk from the equation in Line 4 of Alg. 2 gives

(3.4) αk =
−(γk−µ)+

√
(γk−µ)2+4γk/ηk
2/ηk

= 2γk

(γk−µ)+
√

(γk−µ)2+4γk/ηk
.

Since µ 6 L 6 1/ηk, we have (γk − µ)2 + 4γk/ηk > (γk + µ)2. Thus it follows from
(3.4) that αk 6 1,∀ k > 0. Notice if γk > µ, then γk+1 = (1− αk) γk + αkµ > µ.
Since γ0 > µ, we have γk > µ,∀ k > 0 by induction. �

Lemma 3.2. In any iteration of Alg. 1, Alg. 2 and Alg. 3 will respectively perform

at most logγdec

Lγ2
dec

Lg
and logγdec

Lγ2
dec

Lg+Lh
iterations. Moreover, if Alg. 1 runs for t

iterations, Alg. 2 and Alg. 3 will perform at most t +
(

ln γinc

ln γ−1
dec

)
t + 1

ln γ−1
dec

ln
(
Lgη−1

γdec

)
and t+ 1 + 1

ln γ−1
dec

ln
(
η̃0(Lg+Lh)

γdec

)
iterations in total, respectively.

Proof. Let nk and mk be the numbers of iterations performed within Alg. 2 and
Alg. 3, respectively, in iteration k of Alg. 1. When Alg. 2 ends, we have ηk =
γnk−1

dec min
{
L−1, γincηk−1

}
. Since γdec

Lg
< ηk and ηk−1 6 1

L by (3.3), we have

γdec

Lg
< γnk−1

dec · 1
L , which implies nk 6 logγdec

Lγ2
dec

Lg
. Similarly, mk 6 logγdec

Lγ2
dec

Lg+Lh
.

8

The second conclusion can be proved in the same way as Lemma 6 in [55]. In

particular, when Alg. 2 ends, we must have ηk = γnk−1
dec min

{
L−1, γincηk−1

}
6

γnk−1
dec γincηk−1, which means nk 6 1 +

(
ln γinc

ln γ−1
dec

)
+ 1

ln γ−1
dec

ln
(
ηk−1

ηk

)
and thus

∑t−1
k=0 nk 6 t+

(
ln γinc

ln γ−1
dec

)
t+ 1

ln γ−1
dec

ln
(
η−1

ηt−1

)
6 t+

(
ln γinc

ln γ−1
dec

)
t+ 1

ln γ−1
dec

ln
(
Lgη−1

γdec

)
.

A similar argument can be used to bound
∑t−1
k=0mk. �

Lemma 3.3. Let κ =
Lg
γdecµ

and αk generated by Alg. 1. Then αk >
√

1
κ , ∀ k > 0.

Proof. Lem. 3.1 indicates γk+1 > µ. Hence, from (3.3) and the update of γk+1, it

follows that αk =
√
ηkγk+1 >

√
1
κ , and we obtain the desired results. �

Next, we establish the relationship between two iterates in Alg. 1.
Proposition 3.4. Let {(x(k), z(k), αk, γk)}k≥0 be generated by Alg. 1. Then

(3.5)
F (x(k+1))− F ∗ +

γk+1

2
‖x∗ − z(k+1)‖2

6 (1− αk)
[
F (x(k))− F ∗ + γk

2
‖x∗ − z(k)‖2

]
+ εkαk‖x∗ − z(k+1)‖, ∀k > 0.

Proof. Let x∗ be an optimal solution of (1.1) and x̂(k) = αkx
∗ + (1− αk)x(k). Then

(3.6) x̂(k) − y(k) = αk(x∗ − y(k)) + (1− αk)(x(k) − y(k)).

By the update of y(k) in Alg. 2, we have z(k) − y(k) = − γk+1

αkγk

(
x(k) − y(k)

)
. This

together with (3.6) gives
(3.7)

x̂(k) − y(k) = αk(x∗ − y(k))− αk(1−αk)γk
γk+1

(z(k) − y(k)) = αk
[
x∗ − (1−αk)γk

γk+1
z(k) − αkµ

γk+1
y(k)

]
,

where the last equality follows from the update of γk+1. According to (3.2), there
exists e(k) ∈ Rn such that ‖e(k)‖ 6 εk and e(k) − ∇g(y(k)) − 1

ηk
(x(k+1) − y(k)) ∈

∂H(x(k+1)). By the convexity of H, we have

H(x(k+1)) 6 H(x̂(k)) +
〈
e(k) −∇g(y(k))− 1

ηk
(x(k+1) − y(k)),x(k+1) − x̂(k)

〉
,

which, by the fact that 〈u,v〉 = 1
2

(
‖u‖2 + ‖v‖2 − ‖u− v‖2

)
, implies

H(x(k+1)) 6 H(x̂(k)) +
〈
e(k) −∇g(y(k)),x(k+1) − x̂(k)

〉
− 1

2ηk

(
‖x(k+1) − y(k)‖2 + ‖x(k+1) − x̂(k)‖2 − ‖x̂(k) − y(k)‖2

)
,

6 H(x̂(k)) +
〈
∇g(y(k)), x̂(k) − x(k+1)

〉
+ εk‖x(k+1) − x̂(k)‖

− 1
2ηk

(
‖x(k+1) − y(k)‖2 + ‖x(k+1) − x̂(k)‖2 − ‖x̂(k) − y(k)‖2

)
.

From the inequality above and the stopping condition of Alg. 2, we have

F (x(k+1)) 6g(y(k)) +
〈
∇g(y(k)),x(k+1) − y(k)

〉
+ 1

2ηk

∥∥x(k+1) − y(k)
∥∥2

+H(x(k+1))

6g(y(k)) +
〈
∇g(y(k)), x̂(k) − y(k)

〉
+ 1

2ηk

∥∥x̂(k) − y(k)
∥∥2

+H(x̂(k))

− 1
2ηk

∥∥x̂(k) − x(k+1)
∥∥2

+ εk‖x(k+1) − x̂(k)‖.

Applying (3.6) to the above inequality, we have

F (x(k+1)) 6g(y(k)) +
〈
∇g(y(k)), αk(x∗ − y(k)) + (1− αk)(x(k) − y(k))

〉
+ 1

2ηk

∥∥x̂(k) − y(k)
∥∥2

+H(αkx
∗ + (1− αk)x(k))− 1

2ηk

∥∥x̂(k) − x(k+1)
∥∥2

+ εk‖x(k+1) − x̂(k)‖.

By the fact that αk ∈ (0, 1] from Lem. 3.1, (3.7) and the convexity of H, we have

9

(3.8)

F (x(k+1)) 6(1− αk)
[
g(y(k)) + 〈∇g(y(k)),x(k) − y(k)〉+H(x(k))

]
+ αk

[
g(y(k)) +

〈
∇g(y(k)),x∗ − y(k)

〉
+H(x∗)

]
+ εk‖x(k+1) − x̂(k)‖

+
α2
k

2ηk

∥∥x∗ − (1−αk)γk
γk+1

z(k) − αkµ
γk+1

y(k)
∥∥2 − 1

2ηk

∥∥x̂(k) − x(k+1)
∥∥2
.

Since γk+1 = α2
k/ηk = (1− αk) γk + αkµ, we have from the convexity of ‖ · ‖2 that

α2
k

2ηk

∥∥x∗ − (1−αk)γk
γk+1

z(k) − αkµ
γk+1

y(k)
∥∥2

=γk+1

2

∥∥x∗ − (1−αk)γk
γk+1

z(k) − αkµ
γk+1

y(k)
∥∥2

6 (1−αk)γk
2 ‖x∗ − z(k)‖2 + αkµ

2 ‖x
∗ − y(k)‖2,

which, together with (3.8) and the µ-strong convexity of g, implies

F (x(k+1)) 6(1− αk)
[
g(y(k)) + 〈∇g(y(k)),x(k) − y(k)〉+H(x(k)) + γk

2
‖x∗ − z(k)‖2

]
+ αk

[
g(y(k)) + 〈∇g(y(k)),x∗ − y(k)〉+H(x∗) + µ

2
‖x∗ − y(k)‖2

]
− 1

2ηk

∥∥x̂(k) − x(k+1)
∥∥2

+ εk‖x(k+1) − x̂(k)‖

6(1− αk)
[
F (x(k)) + γk

2
‖x∗ − z(k)‖2

]
+ αkF (x∗)− 1

2ηk

∥∥x̂(k) − x(k+1)
∥∥2

(3.9)

+ εk‖x(k+1) − x̂(k)‖.

By the definitions of z(k+1) and x̂(k), it holds that

(3.10) ‖x̂(k) − x(k+1)‖2 = ‖αkx∗ + (1− αk)x(k) − x(k+1)‖2 = α2
k‖x∗ − z(k+1)‖2.

Apply (3.10) to (3.9) and use γk+1 = α2
k/ηk to obtain the desired inequality. �

We apply (3.5) to derive the convergence rate of Alg. 1.
Theorem 3.5. For any c ∈ [0, 1), Alg. 1 guarantees that

ψk+1 6
∏k
j=0(1− cαj)

(
ψ0 +

√
κ

2(1−c)2L

∑k
t=0

ε2t∏t−1
j=0(1−cαj)

)
for k > 0,(3.11)

where ψk := F (x(k))−F ∗+(1−(1−c)αk)γk2 ‖x
∗−z(k)‖2 and κ is defined in Lem. 3.3.

In addition, when εk = 0 for all k, Alg. 1 guarantees that, for k > 0,

(3.12)
F (x(k+1))− F ∗ + γk+1

2 ‖x
∗ − z(k+1)‖2

6
(
1− 1√

κ

)k+1 (
F (x(0))− F ∗ + γ0

2 ‖x
∗ − z(0)‖2

)
.

Proof. By the Young’s inequality, we have that for any c ∈ [0, 1),

εkαk‖x∗ − z(k+1)‖ 6 (1−c)αk+1α
2
k

2ηk
‖x∗ − z(k+1)‖2 + ηk

2(1−c)αk+1
ε2
k.

Recall γk+1 =
α2
k

ηk
. Hence, we have from (3.5) that

F (x(k+1))− F ∗ +
γk+1

2
‖x∗ − z(k+1)‖2

6(1− αk)
[
F (x(k))− F ∗ + γk

2
‖x∗ − z(k)‖2

]
+

(1−c)αk+1γk+1

2
‖x∗ − z(k+1)‖2 + ηk

2(1−c)αk+1
ε2
k,

which, after rearranging terms, is reduced to

(3.13)
F (x(k+1))− F ∗ +

(
1− (1− c)αk+1

)γk+1

2 ‖x
∗ − z(k+1)‖2

6(1− αk)
[
F (x(k))− F ∗ + γk

2 ‖x
∗ − z(k)‖2

]
+ ηk

2(1−c)αk+1
ε2
k.

Then it follows from (3.13), the definition of ψk, and F (x(k))− F ∗ > 0 that

(3.14) ψk+1 6
1−αk

1−(1−c)αkψk + ηk
2(1−c)αk+1

ε2
k 6 (1− cαk)ψk +

√
κ

2(1−c)Lε
2
k,

where the first inequality is because 1−αk
1−(1−c)αk = 1 − cαk

1−(1−c)αk 6 1 − cαk and the

second inequality is by (3.3) and Lem. 3.3. Recursively applying (3.14) gives

10

ψk+1 6
∏k
j=0(1− cαj)ψ0 +

√
κ

2(1−c)L
∑k
t=0

(∏k
j=t+1(1− cαj)

)
ε2
t

=
∏k
j=0(1− cαj)

(
ψ0 +

√
κ

2(1−c)L
∑k
t=0

ε2t∏t
j=0(1−cαj)

)
,

which implies (3.11) because αj 6 1 for all j > 0.
When εk = 0, (3.12) can be derived by Lem. 3.3 and recursively using (3.5). �

The result in (3.11) is similar to Propositions 2 and 4 in [63] but takes a different
form. It will be later used to derive the oracle complexity of our iAPG. The result
in (3.12) is exactly the convergence property of the APG [52] for a strongly convex
case. Although (3.12) is not new, we still present it here because we need it later to
analyze the complexity to obtain x(k+1) in Line 5 of Alg. 2.

3.2. Complexity of APG for finding an ε-stationary point of (1.1). The
oracle complexity of Alg. 1 must include the complexity for finding x(k+1) satisfying
(3.2) in each iteration of Alg. 2. Such an x(k+1) can be found by approximately
solving (3.1), which is an instance of (1.1) with the g, h and r components being
Φ(· ; y(k), ηk)− r(·), 0 and r(·), respectively. The assumption on r allows us to apply
the exact APG method, i.e., Alg. 1 with εk = 0,∀ k > 0 to (3.1) in order to find x(k+1).
The convergence of the objective gap by the exact APG method is characterized by
(3.12). However, (3.2) requires x(k+1) to be an εk-stationary solution of (1.1) instead
of an εk-optimal solution. Hence, we first establish the complexity for the exact APG
method to find an ε-stationary solution of (1.1). The analysis is standard in literature
and included for the sake of completeness.

Lemma 3.6. Let CL =
Lg+Lh√

L
+
√

Lg+Lh
γdec

, where L and γdec are those in Alg. 1

and Alg. 2. It holds that, for any k > 0,

(3.15) dist
(
0, ∂F (x̃(k+1))

)
6 CL

√
2
(
F (x(k+1))− F ∗

)
.

Proof. When the stopping condition of Alg. 3 holds, we have (cf. [78, Lemma 2.1])
F (x)− F (x̃) > 1

2η̃‖x− x̃‖2, and thus

(3.16) ‖x̃(k+1) − x(k+1)‖ 6
√

2η̃k+1

(
F (x(k+1))− F (x̃(k+1))

)
.

Also, from the update of x̃, we have 0 ∈ ∇(g + h)(x) + 1
η (x̃ − x) + ∂r(x̃), and thus

dist
(
0, ∂F (x̃)

)
6 ‖∇(g + h)(x̃)−∇(g + h)(x) + 1

η (x̃− x)‖ 6 (Lg + Lh + 1
η)‖x̃− x‖.

Hence, for x̃(k+1) in Alg. 1, it holds

dist
(
0, ∂F (x̃(k+1))

)
6 (Lg + Lh + 1

η̃k+1
)‖x̃(k+1) − x(k+1)‖

(3.16)

6 (Lg + Lh + 1
η̃k+1

)
√

2η̃k+1

(
F (x(k+1))− F (x̃(k+1))

)
.(3.17)

Applying (3.3) and the fact that F (x̃(k+1)) > F ∗, we obtain the desired result. �

By (3.12) and (3.15), we immediately have the following result.
Theorem 3.7. Let κ and CL be defined in Lem. 3.3 and Lem. 3.6. When εk = 0

for k > 0, Alg. 1 returns x̃(k+1) as an ε-stationary point of (1.1) with

(3.18) k + 1 6 2
√
κ ln

(
CL

√
2
(
F (x(0))− F ∗ + γ0

2 ‖x∗ − z(0)‖2
)

1
ε

)
.

4. Oracle complexity of iAPG. In this section, we show the oracle complexity
of Alg. 1 for finding an ε-stationary solution of (1.1) in the strongly convex case. The
complexity in the convex but not strongly convex case is not included due to space
limit. For that result, we refer the interested readers to [48].

11

4.1. Complexity for ensuring (3.2). We can find x(k+1) satisfying (3.2) by
calling the iAPG method (Alg. 1) with the following inputs

(4.1) x(k+1) = iAPG
(

Φ(· ; y(k), ηk)− r(·), 0, r(·),x(k), ηk, η
−1
k , η−1

k , η−1
k , (0)k>0, εk

)
,

where Φ is defined in (3.1). Here we use x(k) as the initial solution to compute
x(k+1) and the inputs in (4.1) are chosen based on the fact that Φ(· ; y(k), ηk)− r(·) is
1/ηk-strongly convex and (1/ηk +Lh)-smooth. The complexity of finding x(k+1) then
follows from Thm. 3.7.

Proposition 4.1 (Complexity for ensuring (3.2)). Let x
(k+1)
∗ and Φ be defined

in (3.1). Suppose Alg. 1 is applied to (3.1) with the inputs given in (4.1). Solution
x(k+1) satisfying (3.2) can be found after at most Tk queries to (h,∇h), where

(4.2) Tk = O
(√

1 + Lh
L

ln

√
Lg+Lh+L2

h
/L

√
Φ(x(k);y(k),ηk)−Φ(x

(k+1)
∗ ;y(k),ηk)

εk

)
.

Proof. Recall that Φ(· ; y(k), ηk) − r(·) is (1
ηk

+ Lh)-smooth and 1
ηk

-strongly convex.
From the strong convexity of Φ, it holds

(4.3) 1
2ηk
‖x(k) − x

(k+1)
∗ ‖2 6 Φ(x(k); y(k), ηk)− Φ(x

(k+1)
∗ ; y(k), ηk).

By instantizing Thm. 3.7 on (3.1), Alg. 1 with the inputs given in (4.1) must find
x(k+1) satisfying (3.2) in no more than tk iterations with

tk 62
√

1+ηkLh
γdec

ln

(
1/ηk+Lh√

1/ηk

+

√
1/ηk+Lh
γdec

)√
2Φ(x(k);y(k),ηk)−2Φ(x

(k+1)
∗ ;y(k),ηk)+ 1

ηk
‖x(k)−x

(k+1)
∗ ‖2

εk

=O
(√

1 + Lh
L

ln

(√
Lg+

Lh√
L

+
√
Lg+Lh

)√
Φ(x(k);y(k),ηk)−Φ(x

(k+1)
∗ ;y(k),ηk)

εk

)
,

(4.4)

where the second equation is because of (3.3) and (4.3) and uses the fact ln(1−a)−1 >
a for any a ∈ (0, 1). By instantizing Lem. 3.2 on (3.1) with the input given in (4.1),
the total number of queries of (h,∇h) must be no more than

Tk = 2
(

1 + ln γinc

ln γ−1
dec

)
tk + 2

ln γ−1
dec

ln
(

1+ηkLh
γdec

)
+ 2tk + 2 + 2

ln γ−1
dec

ln
(

1+ηkLh
γdec

)
which, together with (4.4) and (3.3), implies the conclusion. �

4.2. Oracle complexity in the strongly convex case. With Thm. 3.5 and
Prop. 4.1, we establish the oracle complexity to produce an ε-stationary solution of

(1.1) by specifying {εk}k>0 and bounding Φ(x(k); y(k), ηk) − Φ(x
(k+1)
∗ ; y(k), ηk). To

do so, let ε0 > 0 be any constant and define the following quantities

εk = ε0
k+1

√∏k−1
j=0 (1− cαj), ∀ k > 1,(4.5)

S =
√
κ

2(1−c)2L

∑∞
k=0

ε2k∏k−1
j=0 (1−cαk)

=
√
κ

2(1−c)2L

∑∞
k=0

ε20
(k+1)2 <∞,(4.6)

δk =
√∏k−1

j=0 (1− cαj)
√

2(ψ0+S)
µ , ∀ k > 0,(4.7)

where c ∈ [0, 1) is the same constant as that in Thm. 3.5 and κ is defined in Lem. 3.3.
By (3.11), (4.5) and (4.6), we have

(4.8) ψk+1 6
∏k
j=0(1− cαj) (ψ0 + S) , ∀k > 0.

With these preparations, Φ(x(k); y(k), ηk)−Φ(x
(k+1)
∗ ; y(k), ηk) can be upper bounded.

Lemma 4.2. Suppose {εk}k>0 in Alg. 1 are given in (4.5). Let x
(k+1)
∗ and Φ be

defined by (3.1) and δk by (4.7) with c ∈ [0, 1). Alg. 1 guarantees that

12

Φ(x(k); y(k), ηk)− Φ(x(k+1)
∗ ; y(k), ηk) 6


1

2L
dist

(
0, ∂F (x(0))

)2

if k = 0,

1
2L

(
εk−1 +

3Lg(δk+δk−1)

γdec
√
c

)2

if k > 1.
(4.9)

Proof. By y(0) = x(0), we have Φ(x(0); y(0), η0) = H(x(0)). Also, it holds that

Φ(x; y(0), η0) >
〈
∇g(x(0)),x− x(0)

〉
+ 1

2η0
‖x− x(0)‖2 +H(x(0)) + 〈ξ,x− x(0)〉

for any ξ ∈ ∂H(x(0)) and any x, from the convexity of H. Since η0 6 1
L , we have

Φ(x(0); y(0), η0)− Φ(x
(1)
∗ ; y(0), η0) 6−min

x

{ 〈
∇g(x(0)) + ξ,x− x(0)

〉
+ 1

2η0
‖x− x(0)‖2

}
=η0

2 ‖∇g(x(0)) + ξ‖2 6 1
2L‖∇g(x(0)) + ξ‖2.(4.10)

Minimizing the right-hand size of (4.10) over ξ ∈ ∂H(x(0)) gives (4.9) for k = 0.
Suppose k > 1. By the definition of ψk in Thm. 3.5 and the µ-strong convexity

of F , we have

ψk >
µ
2 ‖x

(k)−x∗‖2 +(1− (1− c)αk)γk2 ‖z
(k)−x∗‖2 > µ

2 ‖x
(k)−x∗‖2 + cµ

2 ‖z
(k)−x∗‖2,

where the second inequality is due to (3.3). This inequality implies, for any k ≥ 0,

(4.11) max
{
‖x(k) − x∗‖,

√
c‖z(k) − x∗‖

}
6
√

2ψk
µ
6
√∏k−1

j=0 (1− cαj)
√

2(ψ0+S)
µ

= δk,

where the second inequality is by (4.8) and the equality is by (4.7). Since c ∈ (0, 1)
and y(k) is a convex combination of x(k) and z(k), it follows from (4.11) that

(4.12) ‖y(k) − x∗‖ 6 δk√
c
, ∀ k > 0.

By (3.2), it holds that dist
(
0,∇g(y(k−1))+ 1

ηk−1
(x(k)−y(k−1))+∂H(x(k))

)
6 εk−1

for k > 1. Hence, by the definition of Φ in (3.1), we have

dist
(
0, ∂Φ(x(k); y(k), ηk)

)
6 εk−1 + ‖∇g(y(k))−∇g(y(k−1))‖+ 1

ηk−1
‖x(k) − y(k−1)‖+ 1

ηk
‖x(k) − y(k)‖

6 εk−1 + Lg‖y(k) − y(k−1)‖+
Lg
γdec
‖x(k) − y(k−1)‖+

Lg
γdec
‖x(k) − y(k)‖

6 εk−1 +
Lg(δk+δk−1)√

c
+

Lg
γdec

(
δk + δk−1√

c

)
+

Lg
γdec

(
δk + δk√

c

)
,(4.13)

where the second inequality is by (3.3) and the third one by (4.11), (4.12) and the
triangle inequality. In addition, by the strong convexity of Φ(· ; y, η), it follows

Φ(x(k); y(k), ηk)− Φ(x
(k+1)
∗ ; y(k), ηk) 6 ηk

2 dist
(
0, ∂Φ(x(k); y(k), ηk)

)2
,∀ k > 1,

(4.14)

which, together with (4.13) and the facts that c < 1, γdec 6 1, ηk 6 1
L , and δk 6 δk−1,

gives the result in (4.9) for k > 1. This completes the proof. �

Lem. 4.2 allows us to simplify (4.2) and obtain the following result.
Theorem 4.3 (Oracle complexity to obtain an ε-stationary solution). Suppose

{εk}k>0 in Alg. 1 are given in (4.5). Also, suppose x(k+1) is computed by applying
Alg. 1 to (3.1) with the inputs given in (4.1). Then for any ε > 0, Alg. 1 with6

L = Θ(Lg) can produce an ε-stationary solution of (1.1) by Ksc
crit queries to (g,∇g)

and T sc
crit queries to (h,∇h), where

6We assume L = Θ(Lg) just to simplify the results. The analysis holds for any L 6 Lg .

13

Ksc
crit = O

(√
κ ln

C2
L(ψ0+S)
ε2 + ln

(
Lg+Lh
µ

))
,(4.15)

T sc
crit = O

(√
Lg+Lh
µ ln

(
(1 + Lh

Lg
)Cε

)
· ln C2

L(ψ0+S)
ε2

)
.(4.16)

Here, κ is defined in Lem. 3.3, ψ0 in Thm. 3.5, CL in Lem. 3.6 and

(4.17) Cε = max

{
dist
(
0,∂F (x(0))

)
ε0

, 2√
1−c +

6Lg

ε0γdec

√
c(1−c)

√
2(ψ0+S)

µ

⌈√
κ ln

2(ψ0+S)C2
L

ε2

⌉}
.

Proof. Let K1 be the smallest integer such that x̃(K1) is an ε-stationary point. It
follows from the definition of ψk, (3.15) and (4.8) that

(4.18) dist
(
0, ∂F (x̃(k+1))

)
6 CL

√
2
∏k
j=0(1− cαj) (ψ0 + S), ∀ k > 0.

Let K ′1 =
⌈√

κ ln
2(ψ0+S)C2

L

ε2

⌉
. Since αj > 1/

√
κ by Lem. 3.3, (4.18) implies

∏K′1−1
j=0 (1−

cαj) (ψ0 + S) 6 (1− c/
√
κ)K

′
1 (ψ0 + S) 6 ε2

2C2
L
, which means K1 6 K ′1.

By Lem. 3.2, until an ε-stationary solution is found, the total numbers of iterations

in Alg. 2 and 3 are
(

1 + ln γinc

ln γ−1
dec

)
K1 + 1

ln γ−1
dec

ln
(

Lg
µγdec

)
and K1 +1+ 1

ln γ−1
dec

ln
(
Lg+Lh
Lγdec

)
,

respectively. Since (g,∇g) is queried only twice in each iteration of Alg. 2 and 3,

the total number of queries to (g,∇g) by Alg. 1 is at most
(

2 + ln γinc

ln γ−1
dec

)
K1 + 1 +

logγdec

(
µLγ2

dec

Lg(Lg+Lh)

)
, which implies (4.15) when L = Θ(Lg) because K1 6 K ′1.

Next we bound the right-hand side of (4.2). By the definition of δk in (4.7) and
the choice of εk in (4.5), we have

εk−1+
3Lg(δk+δk−1)

γdec
√
c

εk
= (k+1)

k
√

1−cαk−1

+
3Lg(k+1)

ε0γdec
√
c

√
2(ψ0+S)

µ +
3Lg(k+1)

ε0γdec
√
c
√

1−cαk−1

√
2(ψ0+S)

µ

6 2√
1−c +

6Lg(k+1)

ε0γdec

√
c(1−c)

√
2(ψ0+S)

µ 6 2√
1−c +

6LgK
′
1

ε0γdec

√
c(1−c)

√
2(ψ0+S)

µ(4.19)

for any 1 6 k 6 K ′1 − 1, where the inequality comes from αk−1 6 1. This implies

(4.20) Φ(x(k); y(k), ηk)− Φ(x
(k+1)
∗ ; y(k), ηk) 6 1

2LC
2
ε .

In iteration k of Alg. 1, the query number of (h,∇h) to compute x(k+1) satisfying

(3.2) is at most Tk given in (4.2), and Alg. 2 will stop after at most logγdec

Lγ2
dec

Lg

iterations by Lem. 3.2. In addition, two queries to (h,∇h) is made in each iteration of

Alg. 3, which will stop after at most logγdec

Lγ2
dec

Lg+Lh
iterations by Lem. 3.2. Hence, the

query number of (h,∇h) at iteration k of Alg. 1 is no more than (logγdec

Lγ2
dec

Lg
)Tk +

2 logγdec

Lγ2
dec

Lg+Lh
. Applying (4.20) to the right-hand side of (4.2), we can show that the

total number of queries to (h,∇h) before finding an ε-optimal solution is at most

T sc
crit = K1 ·O

(
logγdec

(
Lγ2

dec

Lg

)√
1 + Lh

L ln

(√
Lg
L + Lh

L +
L2
h

L2Cε

)
+ logγdec

Lγ2
dec

Lg+Lh

)
.

Using the facts that K1 6 K ′1 and L = Θ(Lg) and the fact that ln
(
Lg+Lh
Lg

)√
κ 6√

Lg+Lh
Lg

√
κ =

√
Lg+Lh
γdecµ

, we obtain the desired result in (4.16). �

14

5. Inexact regularized augmented Lagrangian method. In this section,
we consider the affine-constrained composite problem

(5.1) min
x
{G(x) := f(x) + r(x)} , s.t. AEx = bE , AIx 6 bI ,

where f is Lf -smooth and µ-strongly convex with µ > 0, and r is closed convex and
allows easy computation of proxηr

(
z
)

and dist(0, ∂r(z)) for any z ∈ Rn and η > 0.

We assume that (f,∇f) is significantly more expensive than (A(·),A>(·)) to evaluate,
where A = [AE ; AI]. We denote the Lagrange multiplier by λ = [λE ;λI] with λE
and λI associated to the equality and inequality constraints, respectively. We assume
(5.1) has an optimal solution x∗ and the multiplier λ∗ = [λ∗E ;λ∗I] satisfying

(5.2) 0 ∈ ∂G(x∗) + A>λ∗; AEx∗ = bE , AIx
∗ 6 bI ; λ∗I > 0, 〈λ∗I ,AIx

∗−bI〉 = 0.

Our goal is to find an ε-stationary solution of (5.1) defined formally below.
Definition 5.1 (ε-stationary solution). For a given ε > 0, a point x̄ ∈ dom(G)

is called an ε-stationary solution of (5.1), if there exists λ̄ = [λ̄E ; λ̄I] such that

dist
(
0, ∂G(x̄) + A>λ̄

)
6 ε;

√
‖AEx̄− bE‖2 + ‖[AI x̄− bI]+‖2 6 ε;(5.3)

λ̄I > 0, ‖λ̄I � (AI x̄− bI)‖ 6 ε.(5.4)

We consider an inexact regularized augmented Lagrangian method (iRALM) pre-
sented in Alg. 4 for finding an ε-stationary solution for (5.1). At iteration k, the
iRALM generates the next solution by

(5.5) x(k+1) ≈ arg min
x

{
Ψk(x) := Lβk(x,λ(k)) + ρk

2 ‖x− x(k)‖2
}
.

Here, Lβ is the augmented Lagrangian function of (5.1) with the following form:

Lβ(x,λ) = G(x)+〈λE ,AEx−bE〉+β
2
‖AEx−bE‖2+ 1

2β

(∥∥[β(AIx− bI) + λI]+
∥∥2 − ‖λI‖2

)
.

In particular, the iPLAM requires x(k+1) to be an ε̄k-stationary point of Ψk. We can
guarantee this by applying Alg. 1 to (5.5). We will show that, compared to existing
results, the iRALM finds an ε-stationary solution with a significantly reduced number
of queries to (f,∇f) but a slightly increased number of queries to (A(·),A>(·)).

Algorithm 4: Inexact regularized augmented Lagrangian method (iRALM)

1 Inputs: x(0) ∈ dom(G), λ(0), βk > 0, ρk > 0, ε̄k > 0,∀, k > 0 and ε > 0
2 k ← 0

3 while Conditions (5.3) and (5.4) with (x̄, λ̄) = (x(k),λ(k)) do not hold do

4 Find x(k+1) ≈ arg minx Ψk(x), where Ψk is defined in (5.5), such that

(5.6) dist
(
0, ∂Ψk(x(k+1))

)
6 ε̄k,

which can be done, e.g., by the iAPG method. See Settings 1 and 2 below.

5 Let λ
(k+1)
E = λ

(k)
E + βk(AEx(k+1)−bE), λ

(k+1)
I = [λ

(k)
I + βk(AIx

(k+1)−bI)]+,
and set k ← k + 1.

6 Return: (x(k),λ(k))

Before giving the details, we first present the following lemmas to characterize
the relationship between two consecutive iterates of Alg. 4.

Lemma 5.2. Alg. 4 guarantees that, for any k > 0,

ε̄k‖x(k+1) − x∗‖ > µ‖x(k+1) − x∗‖2 + 1
2βk

(
‖λ(k+1) − λ∗‖2 + ‖λ(k+1) − λ(k)‖2 − ‖λ(k) − λ∗‖2

)
+ ρk

2

(
‖x(k+1) − x(k)‖2 + ‖x(k+1) − x∗‖2 − ‖x(k) − x∗‖2

)
.(5.7)

15

Proof. From (5.6), there exists v(k) ∈ ∂xLβk(x(k+1),λ(k)) + ρk(x(k+1) − x(k)) such

that ‖v(k)‖ 6 ε̄k, and thus by the µ-strong convexity of G, we have

〈v(k),x(k+1) − x∗〉(5.8)

>G(x(k+1))−G(x∗) + µ
2
‖x(k+1) − x∗‖2 + 〈A>Eλ

(k)
E ,x(k+1) − x∗〉

+
〈
βkA

>
E(AEx(k+1) − bE),x(k+1) − x∗

〉
+
〈
A>I [βk(AIx

(k+1) − bI) + λ
(k)
I]+,x

(k+1) − x∗
〉

+ 〈ρk(x(k+1) − x(k)),x(k+1) − x∗〉.

By the Cauchy-Schwarz inequality, it holds 〈v(k),x(k+1) − x∗〉 6 ‖v(k)‖ · ‖x(k+1) −
x∗‖ 6 ε̄k‖x(k+1) − x∗‖. Hence, by the update of λ(k+1) and the facts AEx∗ = bE
and AIx

∗ 6 bI , we obtain from (5.8) that

ε̄k‖x(k+1) − x∗‖(5.9)

>G(x(k+1))−G(x∗) + µ
2
‖x(k+1) − x∗‖2 + 〈λ(k+1)

E ,AEx(k+1) − bE〉

+ 〈λ(k+1)
I ,AIx

(k+1) − bI〉+ 〈ρk(x(k+1) − x(k)),x(k+1) − x∗〉

=G(x(k+1))−G(x∗) + µ
2
‖x(k+1) − x∗‖2 + 〈λ(k+1)

E ,AEx(k+1) − bE〉

+ 〈λ(k+1)
I ,AIx

(k+1) − bI〉+ ρk
2

(
‖x(k+1) − x(k)‖2 + ‖x(k+1) − x∗‖2 − ‖x(k) − x∗‖2

)
.

Using the updating equation of λ(k+1) again, we have

〈λ(k+1)
E − λ∗E ,AEx(k+1) − bE〉 = 〈λ(k+1)

E − λ∗E ,
1
βk

(λ
(k+1)
E − λ

(k)
E)〉

= 1
2βk

(
‖λ(k+1)

E − λ∗E‖2 + ‖λ(k+1)
E − λ

(k)
E ‖

2 − ‖λ(k)
E − λ∗E‖2

)
.(5.10)

By [75, Lem. 4], it holds that

〈λ(k+1)
I − λ∗I ,AIx

(k+1) − bI〉 >
〈
λ

(k+1)
I − λ∗I ,max

{
− λ

(k)
I

βk
, AIx

(k+1) − bI
}〉
,

which together with max
{
− λ

(k)
I

βk
, AIx

(k+1) − bI
}

= 1
βk

(λ
(k+1)
I − λ

(k)
I) gives

〈λ(k+1)
I − λ∗I ,AIx

(k+1) − bI〉 = 〈λ(k+1)
I − λ∗I ,

1
βk

(λ
(k+1)
I − λ

(k)
I)〉

= 1
2βk

(
‖λ(k+1)

I − λ∗I‖2 + ‖λ(k+1)
I − λ

(k)
I ‖

2 − ‖λ(k)
I − λ∗I‖2

)
.(5.11)

Adding (5.10) and (5.11) to (5.9) gives

ε̄k‖x(k+1) − x∗‖ > G(x(k+1))−G(x∗) + µ
2
‖x(k+1) − x∗‖2 + 〈λ∗,Ax(k+1) − b〉(5.12)

+ ρk
2

(
‖x(k+1) − x(k)‖2 + ‖x(k+1) − x∗‖2 − ‖x(k) − x∗‖2

)
+ 1

2βk

(
‖λ(k+1) − λ∗‖2 + ‖λ(k+1) − λ(k)‖2 − ‖λ(k) − λ∗‖2

)
.

By the KKT conditions 0 ∈ ∂G(x∗) + A>λ∗ and 〈λ∗I ,AIx
∗−bI〉 = 0, it follows that

G(x(k+1))−G(x∗) + 〈λ∗,Ax(k+1) − b〉

=G(x(k+1))−G(x∗) + 〈A>λ∗,x(k+1) − x∗〉 > µ
2
‖x(k+1) − x∗‖2,

where the inequality holds from the µ-strong convexity of G. Applying this inequality
to (5.12) gives the desired result. �

5.1. Outer-iteration complexity. In this subsection, we assume that (5.6)
can be guaranteed. We specify the choices of {βk}k>0, {ρk}k>0 and {ε̄k}k>0 and
establish the outer-iteration complexity of Alg. 4. To do so, we first show the uniform
boundedness of the primal-dual iterates below.

Lemma 5.3 (Bounded iterates). Suppose βk = β0σ
k and ρk = ρ0σ

−k,∀ k > 0 for
some β0 > 0, ρ0 > 0 and σ > 1 in Alg. 4. It holds, for any k > 0, that

16

√
β0ρ0‖x(k+1) − x∗‖2 + ‖λ(k+1) − λ∗‖2 6

∑k
i=0

2βiε̄i√
β0ρ0

+
√
β0ρ0‖x(0) − x∗‖2 + ‖λ(0) − λ∗‖2.

(5.13)

Proof. Multiplying 2βk to both sides of (5.7) gives

2βkε̄k‖x(k+1) − x∗‖(5.14)

>2µβk‖x(k+1) − x∗‖2 +
(
‖λ(k+1) − λ∗‖2 + ‖λ(k+1) − λ(k)‖2 − ‖λ(k) − λ∗‖2

)
+ β0ρ0

(
‖x(k+1) − x(k)‖2 + ‖x(k+1) − x∗‖2 − ‖x(k) − x∗‖2

)
.

Sum up (5.14) to have

β0ρ0‖x(k+1)−x∗‖2+‖λ(k+1)−λ∗‖2 6
∑k
i=0 2βiε̄i‖x(i+1)−x∗‖+β0ρ0‖x(0)−x∗‖2+‖λ(0)−λ∗‖2.

We obtain (5.13) by the inequality above and Lem. A.1 with λi = 2βi−1ε̄i−1√
β0ρ0

, uk =√
β0ρ0‖x(k) − x∗‖2 + ‖λ(k) − λ∗‖2, and C = β0ρ0‖x(0) − x∗‖2 + ‖λ(0) − λ∗‖2. �

By Lemmas 5.3 and A.2, we show that Alg. 4 produces an ε-KKT point.

Theorem 5.4. Let βk and ρk be defined as in Lem. 5.3, ε̄ = ε(σ−1)
8(σ+1) min{1,

√
β0ρ0},

and ε̄k = min{ε̄,
√

ρ0

20σσ
−k},∀ k > 0 in Alg. 4. Then Alg. 4 will stop and return x(k)

as an ε-stationary point of (5.1) with k no more than
(5.15)

K := max
{⌈

logσ
4D0
√
ρ0√

β0ε

⌉
,
⌈
logσ

4D0
β0ε

⌉
,
⌈
logσ

5(D0+‖λ∗‖)2
β0ε

⌉
,
⌈
2 logσ

8
ε(lnσ)2

⌉
− 1
}

+ 1,

(5.16) where D0 =

√
β0ρ0‖x(0) − x∗‖2 + ‖λ(0) − λ∗‖2.

Proof. Since ε̄i 6 ε̄ for i > 0, we have from (5.13) that

(5.17) ‖x(k) − x∗‖ 6 2ε̄(σk−1)
ρ0(σ−1)

+ D0√
β0ρ0

, ‖λ(k) − λ∗‖ 6 2ε̄
√
β0(σk−1)√
ρ0(σ−1)

+D0, ∀ k > 0.

with D0 defined in (5.16). Hence, by the triangle inequality and (5.17), it holds that

‖x(k+1) − x(k)‖ 6 2ε̄(σk+1+σk−2)
ρ0(σ−1)

+ 2D0√
β0ρ0

, ‖λ(k+1) − λ(k)‖ 6 2ε̄
√
β0(σk+1+σk−2)√

ρ0(σ−1)
+ 2D0,

and thus

ρK−1‖x(K) − x(K−1)‖ 6 2ε̄(σ+1)
σ−1

+
2D0
√
ρ0√

β0σK−1 ,
1

βK−1
‖λ(K) − λ(K−1)‖ 6 2ε̄(σ+1)√

β0ρ0(σ−1)
+ 2D0

β0σK−1 .

(5.18)

By the choice of ε̄ and the definition of K in (5.15), we have from (5.18) that

(5.19) ρK−1‖x(K) − x(K−1)‖ 6 3ε
4 ,

1
βK−1

‖λ(K) − λ(K−1)‖ 6 3ε
4 .

Additionally, since ε̄i 6
√

ρ0

20σσ
−i for i > 0, it is implied by (5.13) that ‖λ(k) −

λ∗‖ 6 k
√

β0

5σ + D0 and thus ‖λ(k)‖ 6 k
√

β0

5σ + D0 + ‖λ∗‖, which further implies

‖λ(k)‖2 6 2β0k
2

5σ + 2(D0 + ‖λ∗‖)2,∀ k > 0. Hence,

(5.20) 1
βK−1

(‖λ(K)‖2 + 1
4‖λ

(K−1)‖2) 6 1
β0σK−1 (β0K

2

2σ + 5
2 (D0 + ‖λ∗‖)2).

Since K − 1 > logσ
5(D0+‖λ∗‖)2

β0ε
, it holds that 5

2β0σK−1 (D0 + ‖λ∗‖)2 6 ε
2 . Also,

K >
⌈
2 logσ

8
ε(lnσ)2

⌉
implies σK > 64

ε2(lnσ)4 . Thus K2

σK
6 ε according to Lem. A.2 with

a = ε and b = σK . Hence, the right-hand side of (5.20) is no more than ε, so

(5.21) 1
βK−1

(‖λ(K)‖2 + 1
4
‖λ(K−1)‖2) 6 ε.

Now from the updating equations of x(k+1) and λ(k+1), we have for any k > 1,

17

dist
(
0, ∂G(x(k)) + A>λ(k)

)
6 ε̄k−1 + ρk−1‖x(k) − x(k−1)‖,(5.22a) √

‖AEx(k) − bE‖2 +
∥∥[AIx(k) − bI]+

∥∥2
6 1

βk−1
‖λ(k) − λ(k−1)‖,(5.22b)

and, by Line 5 of Alg. 4, we have λ
(k)
I > 0,∀ k ≥ 1 and

‖λ(k)
I � (AIx

(k) − bI)‖ 6
∑
i∈I,λ(k)

i >0
|λ(k)
i · (Aix

(k) − bi)|

=
∑
i∈I,λ(k)

i >0
|λ(k)
i · (λ

(k)
i − λ

(k−1)
i)|/βk−1 6 1

βk−1

(
‖λ(k)

I ‖2 + 1
4‖λ

(k−1)
I ‖2

)
.(5.22c)

Moreover, by (5.19), (5.21) and ε̄k 6 ε
4 , the three inequalities in (5.22) imply that

(x(K),λ(K)) is an ε-stationary solution of (5.1), which completes the proof. �

5.2. Overall oracle complexity. In this subsection, we discuss the details on
how to ensure (5.6) and then characterize the total oracle complexity of Alg. 4 to
produce an ε-stationary point of (5.1). Define

gk(x) =f(x) + ρk
2
‖x− x(k)‖2(5.23)

hk(x) =〈λ(k)
E ,AEx− bE〉+ βk

2
‖AEx− bE‖2 +

‖[βk(AIx−bI)+λ
(k)
I

]+‖2

2βk
− ‖λ

(k)
I
‖2

2βk
.(5.24)

Then the iRALM subproblem (5.5) can be written as

(5.25) min
x
{Ψk(x) = gk(x) + hk(x) + r(x)} ,

which is an instance of (1.1) with g = gk and h = hk. This means that (5.6) can be
ensured by approximately solving the iRALM subproblem (5.25) using Alg. 1. This
way, we can apply the complexity result in Thm. 4.3 to establish the oracle complexity
for each outer iteration of Alg. 4.

We adopt the following settings on solving each iRALM subproblem.
Setting 1 (How to solve iRALM subproblems). In iteration k of Alg. 4, Alg. 1

is applied to find x(k+1) satisfying (5.6). More precisely, we compute x(k+1) by

(5.26) x(k+1) = iAPG
(
gk, hk, r,x

(k), η0, γ0, µ+ ρk, L, {εt}t>0, ε̄k

)
,

where εt is defined as in (4.5) for t > 1, gk is defined in (5.23), hk is defined in
(5.24), and7 L = Θ(Lf).

For simplicity, in the setting above, the values of η0, γ0, γdec, γinc, L, and ε0 stay
the same across the calls of the iAPG by different iterations of the iRALM. Also, we
use the previous iRALM iterate x(k) as the initial point to solve the k-th subproblem.

Setting 2 (Choice of parameters). Given an ε ∈ (0, 1), we choose {βk}, {ρk},
and {ε̄k} in Alg. 4 as the same as those in Thm. 5.4.

Notation and some uniform bounds. To facilitate our analysis, we first give
some notations used in this subsection. Given K in (5.15) and D0 in (5.16), we let

(5.27)
ρ = ρK−1, β = βK−1, Bx = 2ε̄(σK−1)

ρ0(σ−1) + D0√
β0ρ0

,

Bλ = 2ε̄
√
β0(σK−1)√
ρ0(σ−1) +D0, ε = min{ε̄,

√
ρ0

20σσ
−K}.

In order to apply Thm. 4.3 to the iRALM subproblem (5.25), we define

LΨk = Lf + ρk + βk‖A‖2, C(k)
L =

LΨk√
L

+
√

LΨk

γdec
, ∀ k < K,(5.28)

κ(k) =
Lf+ρk

γdec(µ+ρk) , S(k) =
√
κ(k)

2(1−c)2L

∑∞
t=0

ε20
(t+1)2 <∞, ∀ k < K,(5.29)

ψ
(k)
0 = Ψk(x(k))−Ψ∗k + (1− (1− c)α0)γ0

2 ‖x
(k+1)
∗ − x(k)‖2, ∀ k < K.(5.30)

7Again we assume L = Θ(Lf) to simplify the results. The analysis holds for any L 6 Lf .

18

with x
(k+1)
∗ = arg minx Ψk(x) and Ψ∗k = minx Ψk(x). Moreover, we define

(5.31)
C

(k)
ε̄k = max

{
dist

(
0, ∂Ψk(x(k))

)
ε0

,

2√
1−c +

6(Lf+ρk)

ε0γdec

√
c(1−c)

√
2(ψ

(k)
0 +S(k))
µ+ρk

⌈√
κ(k) ln

2(ψ
(k)
0 +S(k))(C

(k)
L)2

ε̄2k

⌉}
,

where c ∈ (0, 1) is the same as that in (4.5). Because ρ 6 ρk, β > βk,∀ 0 6 k < K, the

quantities defined below are respectively upper bounds of κ(k), S(k), LΨk , and C
(k)
L :

κ̄ =
Lf+ρ

γdec(µ+ρ) , S =
√
κ̄

2(1−c)2L

∑∞
t=0

ε20
(t+1)2 <∞,(5.32)

LΨ = Lf + ρ0 + β‖A‖2, CL = LΨ√
L

+
√

LΨ

γdec
.(5.33)

By the above notations, we can show the following two lemmas.
Lemma 5.5. Suppose Setting 2 is adopted. It holds that ρk > ρ and βk 6 β for

all 0 6 k < K. In addition, ‖x(k) − x∗‖ 6 Bx and ‖λ(k) − λ∗‖ 6 Bλ hold for all

0 6 k 6 K. Moreover, ‖x(k+1)
∗ − x∗‖ 6 Bx for all 0 6 k < K.

Proof. It is trivial to show that ρk > ρ and βk 6 β,∀ 0 6 k < K. From (5.17) and

the definition of Bx and Bλ in (5.27), we have ‖x(k) − x∗‖ 6 Bx and ‖λ(k) − λ∗‖ 6
Bλ,∀ 0 6 k 6 K. Moreover, notice that the first inequality in (5.17) also applies to

x
(k+1)
∗ . Hence, we have

(5.34) ‖x(k+1)
∗ − x∗‖ 6 2ε̄(σk+1−1)

ρ0(σ−1) + D0√
β0ρ0

6 Bx,∀ k < K.

This completes the proof. �

Lemma 5.6. Let ψ
(k)
0 be defined in (5.30). Then for any 1 6 k < K,

ψ
(k)
0 6 2Bx

(
1 + 2ρ0Bx + ‖A‖(2σBλ +Bλ + ‖λ∗‖)

)
+ (1− (1− c)α0)

γ0B
2
x

2
.

Proof. From (5.22a) and the definition of Ψk, it follows that

dist
(
0, ∂Ψk(x(k))

)
6 dist

(
0, ∂G(x(k))

+ A>λ(k))+ ‖A>E(λ
(k)
E + βk(AEx− bE)) + A>I [λ

(k)
I + βk(AIx− bI)]+ −A>λ(k)‖

=dist
(
0, ∂G(x(k)) + A>λ(k))+ ‖A>E(βk(AEx− bE)) + A>I ([λ

(k)
I + βk(AIx− bI)]+ − λ

(k)
I)‖

6ε̄k−1 + ρk−1‖x(k) − x(k−1)‖+ ‖A‖
√
β2
k‖AEx(k) − bE‖2 + ‖[λ(k)

I + βk(AIx− bI)]+ − λ
(k)
I ‖2

6ε̄k−1 + ρk−1‖x(k) − x(k−1)‖+ ‖A‖
√
β2
k‖AEx(k) − bE‖2 + β2

k‖[AIx(k) − bI]+‖2 + ‖λ(k)
I ‖2

6ε̄k−1 + 2ρ0Bx + ‖A‖(2σBλ +Bλ + ‖λ∗‖),
(5.35)

where the third inequality is because of the facts that λ
(k)
I > 0 and that ‖[x + y]+ −

y‖2 6 ‖[x]+‖2 + ‖y‖2,∀y > 0, and the last inequality is because of Lem. 5.5, (5.22b)
and the fact that

√
a+ b 6

√
a +
√
b,∀ a, b > 0. The inequality in (5.35), together

with the convexity of Ψk, Lem. 5.5, and (5.34), gives

Ψk(x(k))−Ψ∗k 6 2Bx

(
ε̄k−1 + 2ρ0Bx + ‖A‖(2σBλ +Bλ + ‖λ∗‖)

)
,∀ 1 6 k < K.

The conclusion follows from the fact that ε̄k−1 6 1 and ‖x(k+1)
∗ − x(k)‖2 6 B2

x. �

By Lem. 5.6, we can bound ψ
(k)
0 uniformly for 0 6 k < K by the quantity

19

ψ0 := max
{
ψ

(0)
0 , 2Bx

(
1 + 2ρ0Bx + ‖A‖(2σBλ +Bλ + ‖λ∗‖)

)
+ (1− (1− c)α0)

γ0B
2
x

2

}
.

Now we are ready to show the overall oracle complexity of Alg. 4.
Theorem 5.7 (Total oracle complexity to produce an ε-stationary point). Sup-

pose Settings 1 and 2 are adopted. Let K be given in (5.15). Alg. 4 will stop and
return an ε-stationary point of (5.1) after making Qf queries to (f,∇f) and QA

queries to (A(·),A>(·)) with Qf and QA given as follows. (i) When µ = 0,

Qf = O
((
K +

√
Lf
ρ0

σK/2−1√
σ−1

)
ln

C
2
L(ψ0+S)
ε2

)
,(5.36)

QA = O
((
K +

√
Lf
ρ0

σK/2−1√
σ−1

+ ‖A‖
√
β0√

ρ0

σK−1
σ−1

)
·K · ln C

2
L(ψ0+S)
ε2

)
;(5.37)

and (ii) when µ > 0,

Qf = O
(
K
√

Lf
µ ln

C
2
L(ψ0+S)
ε2

)
,(5.38)

QA = O
((
K
√

Lf
µ + ‖A‖

√
β0√

µ
σK/2−1√
σ−1

)
·K · ln (ψ0+S)C

2
L

ε2

)
.

Proof. By Thm. 5.4, we only need to bound the overall number of queries that are
made to produce x(K). From Thm. 4.3, we can find an ε̄k-stationary point of Ψk in

(5.25) by Alg. 1 with Q
(k)
f queries to (f,∇f) and Q

(k)
A queries to (A(·),A>(·)), where

Q
(k)
f = O

(√
κ(k) ln

(C
(k)
L)2(ψ

(k)
0 +S(k))

ε2 + ln
LΨk

µ+ρk

)
,(5.39)

Q
(k)
A = O

(√
LΨk

µ+ρk
ln
(

(
LΨk

Lf+ρk
)C

(k)
ε̄k

)
· ln (C

(k)
L)2(ψ

(k)
0 +S(k))

ε2

)
(5.40)

In the two inequalities above, we have used the fact ε̄k > ε.
When µ = 0, we have from (5.39), ψ

(k)
0 + S(k) 6 ψ0 + S, and C

(k)
L 6 CL that

Qf =
∑K−1
k=0 Q

(k)
f =

∑K−1
k=0 O

(√
κ(k) ln

C
2
L(ψ0+S)
ε2 + ln

LΨk

ρk

)
(5.29)

=
∑K−1
k=0 O

(√
1 +

Lfσk

ρ0
ln

C
2
L(ψ0+S)
ε2

)
,

which gives (5.36) by
∑K−1
k=0

√
1 +

Lfσk

ρ0
6 K +

√
Lf
ρ0

σK/2−1√
σ−1

. Also, it follows from

(5.35) that dist
(
0, ∂Ψk(x(k))

)
6 V Ψ for any k > 0 where

V Ψ = max
{

dist
(
0, ∂Lβ0(x(0),λ(0))

)
, ε̄+ 2ρ0Bx + ‖A‖(Bλ(2σ + 1) + ‖λ∗‖)

}
= O(1).

By the fact that dist
(
0, ∂Ψk(x(k))

)
= O(1), the definition of ε̄2

k in (5.4), and the

inequalities C
(k)
L 6 CL, κ(k) 6 κ̄, and LΨk = Lf + ρk + βk‖A‖2 6 LΨ, we can derive

from (5.31) that ln
(
(
LΨk

Lf+ρk
)C

(k)
ε̄k

)
= O(k). Thus, we have from (5.40) that

QA =
∑K−1
k=0 Q

(k)
A =

∑K−1
k=0 O

(√
LΨk

ρk
ln
(

(
LΨk

Lf+ρk
)C

(k)
ε̄k

)
· ln (C

(k)
L)2(ψ

(k)
0 +S(k))

ε2

)
6
∑K−1
k=0 O

(√
Lf+ρk+βk‖A‖2

ρk
ln
(

(
Lf+ρk+βk
Lf+ρk

)C
(k)
ε̄k

)
· ln (ψ0+S)C

2
L

ε2

)
=O

((
K +

√
Lf
ρ0

σK/2−1√
σ−1

+ ‖A‖
√
β0√

ρ0

σK−1
σ−1

)
·K · ln (ψ0+S)C

2
L

ε2

)
.

When µ > 0, we have

Qf =
∑K−1
k=0 Q

(k)
f =

∑K−1
k=0 O

(√
κ(k) ln

C
2
L(ψ0+S)

ε2
+ ln

LΨk
µ+ρk

)
= O

(
K
√

Lf
µ

ln
C

2
L(ψ0+S)

ε2

)
,

20

where κ(k) 6 κ̄ = O(
√
Lf/µ) according to (5.32). This gives (5.38). Also, we have

QA =
∑K−1
k=0 Q

(k)
A =

∑K−1
k=0 O

(√
LΨk

µ+ρk
ln
(

(
LΨk

Lf+ρk
)C

(k)
ε̄k

)
· ln (C

(k)
L)2(ψ

(k)
0 +S(k))

ε2

)
=
∑K−1
k=0 O

(√
Lf+ρk+βk‖A‖2

µ+ρk
ln
(

(
Lf+ρk+βk
Lf+ρk

)C
(k)
ε̄k

)
· ln (ψ0+S)C

2
L

ε2

)
=O

((
K
√

Lf
µ + ‖A‖

√
β0√

µ
σK/2−1√
σ−1

)
·K · ln (ψ0+S)C

2
L

ε2

)
,

where, again, we use the fact ln
(
(
LΨk

Lf+ρk
)C

(k)
ε̄k

)
= O(k) and the inequalities C

(k)
L 6 CL,

κ(k) 6 κ̄ and LΨk = Lf + ρk + βk‖A‖2 6 LΨ. This proves the case of µ > 0. �

Remark 1. Notice K = O(ln 1
ε) by (5.15), σK = O(1

ε) and ε = Θ(ε). Hence,

from Thm. 5.7, we have Qf = O
(√Lf

ε ln 1
ε

)
and QA = O

((√Lf
ε + ‖A‖

ε

)(
ln 1

ε

)2)
for the case of µ = 0, and Qf = O

(√
Lf
µ

(
ln 1

ε

)2)
and QA = O

((
ln 1

ε

√
Lf
µ +

‖A‖√
µε

)(
ln 1

ε

)2)
for the case of µ > 0. If ρ0 = O(ε) and β0 = O(1

ε), then K = O(1). For

this setting, the factors
(

ln 1
ε

)2
in Qf and QA above will reduce to ln 1

ε . The choice of
βk = β0σ

k and ρk = ρ0σ
−k enables us to obtain the near-optimal complexity results.

This is similar to the setting in [49, Thm. 5]. However, one potential drawback is
that if iRALM does need to run to K outer iterations, then βK →∞ and ρK → 0 as
ε→ 0 and thus the subproblem becomes ill-conditioned.

6. Smoothed bilinear saddle-point structured optimization. In this sec-
tion, we consider the bilinear saddle-point structured optimization problem

(6.1) p∗ = min
x∈Rn

{
p(x) := f(x) + r(x) + max

y∈Rm

{
〈y,Ax〉 − φ(y)

}}
,

where A ∈ Rm×n, f is smooth and convex, r and φ are closed convex and admit
easy proximal mappings, and r allows easy computation of dist(z′, ∂r(z)) for any
z, z′ ∈ Rn. We assume that (f,∇f) is significantly more expensive than (A(·),A>(·))
to evaluate. We adopt the following notation in this section

G(x) := f(x) + r(x), h̄(x) := max
y∈Rm

{
〈y,Ax〉 − φ(y)

}
,(6.2a)

ϕ(y) := min
x∈Rn

{
G(x) + 〈y,Ax〉

}
, d(y) := ϕ(y)− φ(y).(6.2b)

We call p(x)− d(y) the duality gap at (x,y) which is non-negative by the definition
of p and d. A pair (x∗,y∗) that satisfies p(x∗) = d(y∗), or equivalently, 0 ∈ ∂G(x∗) +
A>y∗,0 ∈ Ax∗ − ∂φ(y∗) is called a saddle point of (6.1). Apparently, p∗ = p(x∗) =
d(y∗) = G(x∗) + 〈y∗,Ax∗〉 − φ(y∗). We make the following assumption on (6.1).

Assumption 1. Function f is Lf -smooth and µ-strongly convex with µ > 0;
Dφ := maxy1,y2∈dom(φ) ‖y1 − y2‖ <∞; (6.1) has a saddle point (x∗,y∗).

Our goal is to find an ε-stationary solution of (6.1) defined formally below.
Definition 6.1. For ε > 0, a point (x̄, ȳ) is an ε-stationary solution of (6.1) if

(6.3) dist
(
0, ∂G(x̄) + A>ȳ

)
6 ε, dist

(
0,Ax̄− ∂φ(ȳ)

)
6 ε.

The following result shows the duality gap of an ε-stationary solution of (6.1).
Theorem 6.2. Under Assumption 1, if (x̄, ȳ) is an ε-stationary solution of (6.1),

then p(x̄)− d(ȳ) 6 2εDφ + 3ε2

2µ .

Proof. Since (x̄, ȳ) is an ε-stationary solution, there exist ū ∈ ∂G(x̄) + A>ȳ and
v̄ ∈ Ax̄− ∂φ(ȳ) such that ‖ū‖ 6 ε and ‖v̄‖ 6 ε. By the µ-strong convexity of G and
the Young’s inequality, it follows that

21

G(x̄) 6 G(x∗) + 〈ū−A>ȳ, x̄− x∗〉 − µ
2 ‖x̄− x∗‖2

= G(x∗) + 〈ū, x̄− x∗〉 − 〈ȳ,Ax̄−Ax∗〉 − µ
2 ‖x̄− x∗‖2

6 G(x∗)− 〈ȳ,Ax̄−Ax∗〉+ 1
2µ‖ū‖

2.(6.4)

In addition, by the convexity of φ and the definition of h̄ in (6.2), we have h̄(x̄) +
〈v̄, ȳ − ŷ〉 6 〈ȳ,Ax̄〉 − φ(ȳ), where ŷ ∈ arg maxy

{
〈y,Ax̄〉 − φ(y)

}
. Adding this

inequality to (6.4) gives

p(x̄) + 〈v̄, ȳ − ŷ〉 6 G(x∗) + 〈ȳ,Ax∗〉 − φ(ȳ) + 1
2µ‖ū‖

2

= p(x∗) + 〈ȳ − y∗,Ax∗〉+ φ(y∗)− φ(ȳ) + 1
2µ‖ū‖

2,(6.5)

where the equality holds because (x∗,y∗) is a saddle point of (6.1). Now from the
convexity of φ and the fact Ax∗ ∈ ∂φ(y∗), it follows that 〈ȳ−y∗,Ax∗〉+φ(y∗)−φ(ȳ) 6
0. Hence, we have from (6.5) and the Cauchy-Schwarz inequality that

(6.6) p(x̄) 6 p(x∗)− 〈v̄, ȳ − ŷ〉+ 1
2µ‖ū‖

2 6 p(x∗) + εDφ + ε2

2µ .

Similarly, from the convexity of φ and v̄ ∈ Ax̄− ∂φ(ȳ), it follows that

(6.7) − φ(ȳ) > −φ(y∗) + 〈v̄ −Ax̄, ȳ − y∗〉.
In addition, by the definition of ϕ in (6.2) and the fact ū ∈ ∂G(x̄) + A>ȳ, we have
ϕ(ȳ) + 〈ū, x̄− x̂〉 > G(x̄) + 〈ȳ,Ax̄〉, where x̂ = arg minx

{
G(x) + 〈ȳ,Ax〉

}
. Adding

this inequality to (6.7) and using the fact that p∗ = G(x∗) + 〈y∗,Ax∗〉 − φ(y∗) yield

d(ȳ) + 〈ū, x̄− x̂〉 > G(x̄) + 〈y∗,Ax̄〉 − φ(y∗) + 〈v̄, ȳ − y∗〉
= p∗ − p(x∗) +G(x̄) + 〈y∗,Ax̄〉 − φ(y∗) + 〈v̄, ȳ − y∗〉
= p∗ −G(x∗) +G(x̄) + 〈y∗,Ax̄−Ax∗〉+ 〈v̄, ȳ − y∗〉.(6.8)

Notice −A>y∗ ∈ ∂G(x∗). By the convexity of G, we have −G(x∗)+G(x̄)+〈y∗,Ax̄−
Ax̄∗〉 > 0. Hence, (6.8) and the Cauchy-Schwarz inequality together imply

(6.9) d(ȳ) + 〈ū, x̄− x̂〉 > p∗ + 〈v̄, ȳ − y∗〉 > p∗ − εDy.

Moreover, from ū ∈ ∂G(x̄) + A>ȳ and 0 ∈ ∂G(x̂) + A>ȳ together with the µ-strong
convexity of G, it holds 〈ū, x̄ − x̂〉 > µ‖x̄ − x̂‖2. Hence, by the Cauchy-Schwarz

ineuqality, we have ‖x̄ − x̂‖ 6 ‖ū‖
µ and 〈ū, x̄ − x̂〉 6 ‖ū‖2

µ 6 ε2

µ , which together

with (6.9) gives d(ȳ) > p∗ − εDφ − ε2

µ . Therefore, from (6.6), we conclude that

p(x̄)− d(ȳ) 6 2εDφ + 3ε2

2µ . This completes the proof. �

Remark 2. By Thm. 6.2, to produce a primal-dual solution of (6.1) with a

duality gap at most ε > 0, it suffices to find a min
{

ε
4Dφ

,
√

4µε
3

}
-stationary solution.

When φ is convex but not strongly convex, h̄ can be non-smooth. In this case, [54]
introduces a smoothing technique and solves an approximation of (6.1) as follows:

(6.10) p∗ρ = min
x∈Rn

{pρ(x) := f(x) + r(x) + hρ(x)} ,

where ρ > 0 is the smoothing parameter, and hρ is defined by

(6.11) hρ(x) = max
y∈Rm

{
〈y,Ax〉 − φ(y)− ρ

2‖y − y(0)‖2
}

with any y(0) ∈ dom(φ). The result below is from [54, Thm. 1].

Lemma 6.3. hρ defined in (6.11) is ‖A‖
2

ρ -smooth and ∇hρ(x) = A>y(x), where

(6.12) y(x) = arg max
y∈Rm

{
〈y,Ax〉 − φ(y)− ρ

2‖y − y(0)‖2
}

= proxφ/ρ

(
y(0) + 1

ρAx
)
.

22

Lem. 6.3 implies that (6.10) is an instance of (1.1) with g = f and h = hρ. This
means we can compute an ε-stationary point of (6.10) by calling the iAPG method
in Alg. 1. We present this approach in Alg. 5.

Algorithm 5: Smoothing iAPG method for (6.1)

1 Inputs: x(0) ∈ dom(r), y(0) ∈ dom(φ) , ρ > 0, η−1 6 1
L

, γ0 ∈ [µ, 1/η−1],

L ∈ [µ,Lf], and ε > 0
2 Compute:

(6.13) x̄ = iAPG
(
f, hρ, r,x

(0), η−1, γ0, µ, L, {εk}k>0, ε
)
,

where hρ is defined in (6.11) and εk is defined as in (4.5) for k > 0.

3 Return: x̄ and ȳ = y(x̄), where y(·) is defined in (6.12).

By Lem. 6.3 and Thm. 4.3, we have the following complexity result.
Theorem 6.4 (Oracle complexity to produce an ε-stationary solution). Suppose

Assumption 1 holds and (x̄, ȳ) is returned by Alg. 5 with ρ = ε
Dφ

. Then (x̄, ȳ) is an

ε-stationary solution of (6.1). Moreover, if L = Θ(Lf), Alg. 5 produces (x̄, ȳ) using
at most Ksp queries to (f,∇f) and Tsp queries to

(
A(·),A>(·)

)
, where

(6.14) Ksp = O
(√

κf ln
C2
L(ψ0+Sf)

ε2

)
, Tsp = O

((√
κf + ‖A‖√

εµ

)
ln
(

1
ε

)
ln

C2
L(ψ0+S)
ε2

)
.

Here, κf =
Lf
γdecµ

, Sf is the same as S in (4.6) except that κ is replaced by κf ,

ψ0 = pρ(x
(0))− p∗ρ + (1− (1− c)α0) γ0

2
‖x∗ρ − x(0)‖2, CL =

Lf+
Dφ‖A‖

2

ε√
L

+

√
Lf+

Dφ‖A‖2

ε
γdec

with x∗ρ = arg minx pρ(x), p∗ρ = minx pρ(x) = pρ(x
∗
ρ) and c ∈ (0, 1).

Proof. Suppose that x̄ is an ε-stationary point of pρ, i.e., dist
(
0, ∂pρ(x̄)

)
6 ε. Let

ȳ = y(x̄). Then by Lem. 6.3, we have dist
(
0,∇g(x̄)+∂r(x̄)+A>ȳ

)
6 ε. Also, notice

0 ∈ Ax̄− ∂φ(ȳ)− ρ(ȳ − y(0)). Thus dist
(
0,Ax̄− ∂φ(ȳ)

)
6 ρ‖ȳ − y(0)‖ 6 ρDφ = ε.

Therefore, (x̄, ȳ) is an ε-stationary solution of (6.1).
Applying Alg. 1 to (6.10) by (6.13), the quantity Cε in Thm. 4.3 becomes

Cε = max

{
dist
(
0,∂pρ(x(0))

)
ε0

, 2
1−c +

3Lf (2−c)
ε0γdec

√
c(1−c)

√
2(ψ0+Sf)

µ

⌈√
κf ln

2(ψ0+Sf)C2
L

ε2

⌉}
.

Now, first notice that by Lem. 6.3, querying∇hρ once needs one query to
(
A(·),A>(·)

)
.

Second, by Lem. 6.3 and the boundedness of dom(φ), we have dist
(
0, ∂pρ(x

(0))
)

=
O(1). Also, by the µ-strong convexity of pρ, it follows

ψ0 6
[
1 + (1− (1− c)α0)γ0

µ

]
(pρ(x

(0))− p∗ρ)

6
[
1 + (1− (1− c)α0)γ0

µ

]
(p(x(0))− p∗ + ρ

2D
2
φ) = O(1).

Hence, ln
(

(1 + ‖A‖2
Lfρ

)Cε

)
= O(ln(1

ε)). Thirdly, the smoothness constant of hρ is

‖A‖2
ρ =

Dφ‖A‖2
ε . Therefore we obtain the bounds on Ksp and Tsp from Thm. 4.3. �

Remark 3. Since ψ0 = O(1), Sf = O(1) and CL = O(‖A‖
2

ε), according to

Thm. 6.4, we have Qf = O
(√Lf

µ ln(1
ε)
)

and QA = O
((√Lf

µ + ‖A‖√
εµ

)
ln2(1

ε)
)
.

7. Experimental results. In this section, we demonstrate the practical per-
formance of the proposed algorithms. All the tests were conducted with MATLAB
2021a on a Windows machine with 10 CPU cores and 128 GB memory.

23

7.1. Multitask learning. We first test the iAPG on the multitask learning [15]
and compare it to the exact counterpart. Given m binary-class datasets Dl =
{(xl,i, yl,i)}Nli=1, l = 1, . . . ,m with xl,i ∈ Rn and the corresponding label yl,i ∈ {+1,−1}
for each l and i, we solve the multitask logistic regression [19] and use the regularizer
given in [15, Eqn. (23)] together with an `1 term:

min
W

m∑
l=1

1

Nl

Nl∑
i=1

ln
(
1 + exp(−yl,iw>l xl,i)

)
+
µ

2
‖W‖2F︸ ︷︷ ︸

g(W)

+
λ1

2
‖W − 1

m
W11>‖2F︸ ︷︷ ︸

h(W)

+λ2‖W‖1︸ ︷︷ ︸
r(W)

,

where ‖W‖1 =
∑
i,j |wi,j | and wl is the lth of W and the classifier for task l.

In the experiments, we fixed λ2 = 10−3 and chose µ ∈ {0.01, 0.1} and λ1 ∈
{1, 10, 100}. A larger value of λ1 leads to a stronger correlation between the m
classifiers and a larger smoothness constant of h. We randomly generated m = 4
binary-class datasets as in [77]. For each l = 1, . . . ,m, every positive sample follows
the Gaussian distribution N (µl,Σ) and negative sample following N (−µl,Σ) with

Σ =

[
ρ1s×s + (1− ρ)Is×s 0s×(n−s)

0(n−s)×s I(n−s)×(n−s)

]
, µl =

[
1s

0n−s

]
+ dl

where the entries of dl follow the uniform distribution on [1
2 , 1]. We set n = 200, Nl =

500,∀ l or n = 2000, Nl = 5000,∀ l. For each combination of (µ, λ1, n,Nl), we con-
ducted 10 independent trials. Since the smoothness constants of g and h can be
computed explicitly, we also tested the methods without line search. We terminated
the tested method once it produced an ε-stationary point W, i.e., dist(0, ∂F (W)) 6 ε,
and ε = 10−6 was set. For both iAPG and APG, we set γinc = 2 and γdec = 1

2 as in
Alg. 2 if line search is adopted. In addition, for iAPG, the initial inexactness ε0 = 10−3

was set. The results are shown in Table 1. Here, #g represents the number8 of calls to
g or ∇g, #h is the number of calls to h or ∇h, stat.viol. denotes dist(0, ∂F (W)),
and the time is in seconds. From the results, we see that the proposed iAPG requires
smaller #g than the exact APG in all cases. Though iAPG has larger #h than APG,
the former takes shorter time and thus is more efficient. The advantage of iAPG over
APG becomes more significant as the problem becomes more difficult, i.e., when µ is
smaller and/or λ1 is bigger. These verify our theoretical results. In addition, even
without knowing the smoothness constants, the iAPG by line search has a similar
performance to that using the smoothness constants.

Table 1
Results by the proposed iAPG method (i.e., Alg. 1) and its exact counterpart APG on solving

10 independent random instances of the regularized multitask logistic regression with different sizes
and model parameters. The numbers in the parentheses are the standard deviations.

iAPG no line search iAPG with line search APG no line search APG with line search

(µ, λ1) #g #h stat. viol. time #g #h stat. viol. time #(g, h) stat. viol. time #(g, h) stat. viol. time
Problem size: n = 200, Nl = 500 for each l = 1, . . . , 4

(0.1, 1) 37(0.0) 546(4.1) 7.4e-7(7.9e-8) 0.03 46(4.0) 850(66.6) 7.0e-7(2.1e-7) 0.04 103(0.0) 8.0e-7(3.0e-8) 0.04 158(4.2) 7.5e-7(1.7e-7) 0.05
(0.1, 10) 37(0.0) 1815(7.4) 7.3e-7(7.7e-8) 0.03 47(2.6) 2209(104.9) 7.0e-7(2.4e-7) 0.04 322(1.0) 9.5e-7(3.1e-8) 0.09 604(4.4) 8.6e-7(9.5e-8) 0.15
(0.1, 100) 37(0.0) 5946(37.0) 7.7e-7(6.7e-8) 0.06 48(2.1) 5226(298.4) 5.3e-7(2.6e-7) 0.06 1038(4.1) 9.8e-7(9.0e-9) 0.27 1584(6.0) 9.7e-7(1.3e-8) 0.38
(0.01, 1) 106(1.1) 1806(13.7) 8.9e-7(7.4e-8) 0.05 106(0.9) 2313(24.7) 8.8e-7(8.7e-8) 0.06 288(1.0) 9.6e-7(2.3e-8) 0.08 404(1.2) 9.2e-7(6.0e-8) 0.10
(0.01, 10) 106(1.0) 6023(76.8) 8.6e-7(6.5e-8) 0.08 106(0.9) 5727(211.3) 8.9e-7(7.6e-8) 0.08 874(4.2) 9.8e-7(1.1e-8) 0.22 1643(10.0) 9.6e-7(3.1e-8) 0.39
(0.01, 100) 107(0.8) 19666(189.9) 8.6e-7(5.5e-8) 0.16 107(1.4) 13381(430.9) 8.6e-7(1.1e-7) 0.13 2775(13.4) 1.0e-6(3.2e-9) 0.71 4248(22.9) 9.9e-7(8.6e-9) 1.02

Problem size: n = 2000, Nl = 5000 for each l = 1, . . . , 4
(0.1, 1) 31(0.0) 561(0.6) 5.3e-7(2.1e-8) 4.5 38(4.9) 869(113.3) 3.4e-7(2.8e-7) 4.7 105(0.0) 8.5e-7(1.9e-8) 6.4 165(1.7) 7.5e-7(9.5e-8) 7.9
(0.1, 10) 31(0.0) 1870(5.6) 5.5e-7(2.0e-8) 4.5 41(4.9) 2149(245.9) 6.8e-7(3.4e-7) 4.8 341(0.6) 9.6e-7(1.6e-8) 12.4 647(0.0) 8.2e-7(2.1e-8) 20.0
(0.1, 100) 31(0.0) 6102(17.2) 5.6e-7(1.6e-8) 4.9 41(6.1) 5103(854.0) 4.5e-7(3.5e-7) 5.0 1107(2.1) 9.8e-7(1.0e-8) 32.0 1728(8.2) 9.5e-7(3.7e-8) 47.2
(0.01, 1) 91(0.6) 2131(12.5) 7.9e-7(6.4e-8) 6.1 88(0.0) 2612(7.3) 7.0e-7(1.8e-8) 6.0 319(0.8) 9.7e-7(2.8e-8) 11.8 496(2.2) 9.2e-7(5.7e-8) 16.2
(0.01, 10) 91(0.0) 7099(17.0) 7.6e-7(2.1e-8) 6.4 88(0.0) 7096(183.2) 7.0e-7(2.2e-8) 6.3 999(0.8) 9.9e-7(1.0e-8) 29.2 1903(4.6) 9.7e-7(1.9e-8) 51.7
(0.01, 100) 91(0.0) 23013(41.8) 7.6e-7(1.3e-8) 7.3 88(0.0) 18142(281.0) 7.0e-7(1.5e-8) 6.9 3183(4.0) 9.9e-7(1.6e-9) 85.1 4975(14.5) 9.9e-7(1.2e-8) 129.1

8We increase #g by one if g or ∇g or (g,∇g) is called. The same rule is adopted for #h.

24

7.2. Zero-sum constrained LASSO. In this subsection, we test the iRALM
in Alg. 4 with iAPG as a subroutine, on the zero-sum constrained LASSO [17,30]:

(7.1) min
x

1
2‖Ax− b‖2 + λ‖x‖1, s.t. 1√

n

∑n
i=1 xi = 0.

Here, A ∈ Rm×n and b ∈ Rm, and we divide by
√
n in the constraint to normalize the

coefficient vector. We name the proposed method as iRALM iAPG and compare it
to the accelerated primal-dual method, called APD, in [20]. To apply APD, we solve
an equivalent min-max problem by the ordinary Lagrangian function of (7.1). For
iRALM iAPG9, we set in Alg. 4 βk = β0σ

k, ρk = ρ0σ
−k with β0 = 1, ρ0 = 10−3, σ = 3,

and ε0 = 10−5, γinc = 3, γdec = 1
2 in Alg. 2 if line search is adopted. We set τ0 = 1

and γ0 = 10−3 for APD if line search is adopted; see Alg. 2.3 in [20].
In the tests, we set m = 2000, n = 5000 and fixed λ = 10−3 in (7.1). Each

row of A took the form of a
‖a‖ , where a was generated by the standard Gaussian

distribution. We generated a zero-sum sparse vector xo with 200 nonzero components,
whose locations were selected uniformly at random. Then we let b = Axo+10−3 ξ

‖Axo‖
with ξ generated from the standard Gaussian distribution. The stopping tolerance
was set to ε = 10−6 to produce an ε-stationary point. We conducted 10 independent
runs. The results are reported in Table 2, where the methods without line search used
explicitly-computed smoothness constants to set a constant stepsize. The quantity
#query obj denotes the number of queries to (A,A>) and #query cstr the number
of times the constraint function in (7.1) is evaluated. The quantities pres and dres

respectively mean the violations of primal and dual feasibility in the KKT system.
From the results, we see that the proposed method needs significantly shorter time
than the APD method to produce comparable solutions. In addition, both methods
with line search performed similarly as well as those without line search.

Table 2
Results by the iRALM iAPG method with and without line search and the APD method in [20]

with and without line search on solving 10 independent random instances (7.1) with m = 2000 and
n = 5000. The numbers in the parentheses are the standard deviations.

Method #query obj #query cstr pres dres time

iRALM iAPG no line search 2521(286.3) 21098(4723.5) 3.0e-7(2.9e-7) 6.2e-8(2.1e-10) 18.2
iRALM iAPG with line search 2962(347.0) 9760(1200.6) 3.0e-7(2.9e-7) 5.2e-8(9.0e-9) 17.0

APD no line search 7929(606.7) 8.8e-10(1.1e-9) 3.0e-7(2.8e-7) 51.4
APD with line search 4349(334.8) 1.8e-7(2.2e-7) 2.9e-7(2.8e-7) 55.3

7.3. Portfolio optimization. In this subsection, we test the proposed method
iRALM iAPG on solving the portfolio optimization:

(7.2) min
x

1
2
x>Qx, s.t. x > 0,

∑n
i=1 xi 6 1, ξ>x > c,

where ξ contains expected return rates of n assets, Q is the covariance matrix of the
return rates, and c is the minimum total return.

We solve instances of (7.2) with the real NASDAQ dataset10 [59], where ξ is the
mean of 30-day return rates. The original covariance matrix Q0 ∈ R2730×2730 is rank-
deficient, and in (7.2), we set Q = Q0 + µI with µ ∈ {0, 10−3, 0.1}. We set c = 0.02,
a tolerance to ε = 10−6 and also a maximum running time to one hour. We found
that APD with line search did not work well for these instances, possibly because of
the rounding error during the line search. Hence, we only reported its results without
line search by explicitly computing the smoothness constants and setting constant

9A comparison to iRALM with the exact APG as a subroutine can be found in the longer arXiv
version [48] of this paper.

10More results on synthetic data can be found in the longer arXiv version [48] of this paper.

25

stepsizes. The results by all methods are shown in Table 3, where cmpl represents the
amount of violation of complementarity condition in the KKT system, and all other
quantities have the same meanings as those in Table 2. From the results, we see that
the proposed method iRALM iAPG was significantly more efficient than APD and
PDS in terms of running time. For the hardest case that corresponds to µ = 0, APD
and PDS both failed to reach the desired accuracy within one hour. PDS required
much more queries to the constraint functions, though its queries to the objective was
significantly fewer than the proposed method. This is because the inner loop of PDS
needs to run to a theoretically-determined maximum number of iterations rather than
to a computationally-checkable stopping condition.

Table 3
Results by the proposed iRALM iAPG, the APD in [20], and the PDS in [41] on solving in-

stances of the portfolio optimization (7.2) with NASDAQ data.

Method #query obj #query cstr pres dres cmpl time

µ
=

0

iRALM iAPG no line search 112704 5530144 0.0e+00 4.2e-07 9.2e-19 350.6
iRALM iAPG with line search 37235 715328 0.0e+00 4.2e-07 0.0e+00 97.0

APD no line search 1118808 0.0e+00 1.3e-06 2.2e-17 3603.8
PDS 54058 176318909 3.5e-18 1.1e-06 1.5e-25 3604.0

µ
=

1
0
−

3 iRALM iAPG no line search 21314 375994 0.0e+00 2.3e-07 7.0e-14 54.1
iRALM iAPG with line search 48643 117194 0.0e+00 2.3e-07 7.1e-14 108.4

APD no line search 1119046 0.0e+00 8.5e-07 4.9e-18 3603.6
PDS 6278 8927446 0.0e+00 2.2e-07 0.0e+00 195.5

µ
=

0
.1

iRALM iAPG no line search 3206 32178 4.4e-09 6.2e-08 4.8e-13 10.8
iRALM iAPG with line search 6601 16451 5.2e-09 6.2e-08 5.6e-13 17.8

APD no line search 1119360 0.0e+00 9.0e-08 2.6e-21 3603.6
PDS 1404 29512311 0.0e+00 5.6e-08 0.0e+00 591.7

8. Conclusions. We present an inexact accelerated proximal gradient (iAPG)
method for composite convex optimization, which have two smooth components with
significantly different computational costs. When the more costly component has
a significantly smaller smoothness constant than the less costly one, the proposed
iAPG can significantly reduce the overall time complexity than its exact counter-
part, by querying the more costly component less frequently than the less costly one.
Using the iAPG as a subroutine, we proposed gradient-based methods for solving
affine-constrained composite convex optimization and for solving bilinear saddle-point
structured nonsmooth convex optimization. Our methods can have significantly lower
time complexity than existing methods.

Appendix A. Technical Lemmas. The following technical lemmas are needed
in our convergence analysis. The first lemma below is obtained by applying inequality√
a+ b 6

√
a+
√
b for a, b > 0 to the conclusion of Lemma 1 in [63].

Lemma A.1. Let {uk}k>1 be a sequence of nonnegative numbers. Suppose u2
k 6

C +
∑k
i=1 λiui,∀ k > 1, where C > 0 is a constant and λi > 0 for all i > 1. Then

uk 6
∑k
i=1 λi +

√
C,∀ k > 1.

Lemma A.2. Let σ > 1 and a ∈ (0, 1). If b > 64
a2(lnσ)4 > 1, then (logσ b)

2 6 a ·b.
Proof. Let θ(x) = 1

2 (lnx)2 − x. Then θ′(x) = 1
x lnx − 1. Since lnx < x, ∀x > 0, we

have θ′(x) < 0,∀x > 0, so θ is decreasing. Hence, θ(x) 6 θ(1) < 0,∀x > 1, which

implies (logσ x
2)2 6 8x

(lnσ)2 ,∀x > 1. Taking x =
√
b gives (logσ b)

2 6 8
√
b

(lnσ)2 6 a · b,
where the second inequality is by the asssumption that b > 64

a2(lnσ)4 . �

REFERENCES

26

[1] Z. Allen-Zhu and E. Hazan. Optimal black-box reductions between optimization objectives.
Advances in Neural Information Processing Systems, 29:1614–1622, 2016.

[2] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[3] A. Beck and M. Teboulle. Smoothing and first order methods: A unified framework. SIAM
Journal on Optimization, 22(2):557–580, 2012.

[4] Y. Bello-Cruz, M. L. Gonçalves, and N. Krislock. On inexact accelerated proximal gradient
methods with relative error rules. arXiv preprint arXiv:2005.03766, 2020.

[5] R. I. Bot, E. R. Csetnek, and D.-K. Nguyen. Fast augmented lagrangian method in the convex
regime with convergence guarantees for the iterates. arXiv:2111.09370, 2021.

[6] K. Bredies and H. Sun. Accelerated douglas-rachford methods for the solution of convex-concave
saddle-point problems. arXiv preprint arXiv:1604.06282, 2016.

[7] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of
the ACM (JACM), 58(3):1–37, 2011.

[8] E. J. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of
Computational mathematics, 9(6):717–772, 2009.

[9] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with
applications to imaging. Journal of mathematical imaging and vision, 40(1):120–145, 2011.

[10] X. Chen, Q. Lin, S. Kim, J. G. Carbonell, and E. P. Xing. Smoothing proximal gradient method
for general structured sparse regression. Annals of Applied Stat., 6(2):719–752, 2012.

[11] X. Chen, Q. Lin, and B. Sen. On degrees of freedom of projection estimators with applications
to multivariate nonparametric regression. Journal of the American Statistical Association,
115(529):173–186, 2020.

[12] Y. Chen, G. Lan, and Y. Ouyang. Optimal primal-dual methods for a class of saddle point
problems. SIAM Journal on Optimization, 24(4):1779–1814, 2014.

[13] Y. Chen, G. Lan, and Y. Ouyang. Accelerated schemes for a class of variational inequalities.
Mathematical Programming, 165(1):113–149, 2017.

[14] D. Dvinskikh and A. Gasnikov. Decentralized and parallel primal and dual accelerated methods
for stochastic convex programming problems. Journal of Inverse and Ill-posed Problems,
29(3):385–405, 2021.

[15] T. Evgeniou, C. A. Micchelli, M. Pontil, and J. Shawe-Taylor. Learning multiple tasks with
kernel methods. Journal of Machine Learning Research, 6(4), 2005.

[16] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9(3):432–441, 2008.

[17] B. R. Gaines, J. Kim, and H. Zhou. Algorithms for fitting the constrained lasso. Journal of
Computational and Graphical Statistics, 27(4):861–871, 2018.

[18] E. Gorbunov, D. Dvinskikh, and A. Gasnikov. Optimal decentralized distributed algorithms
for stochastic convex optimization. arXiv preprint arXiv:1911.07363, 2019.

[19] X. Gu, F.-L. Chung, H. Ishibuchi, and S. Wang. Multitask coupled logistic regression and
its fast implementation for large multitask datasets. IEEE Transactions on Cybernetics,
45(9):1953–1966, 2014.

[20] E. Y. Hamedani and N. S. Aybat. A primal-dual algorithm with line search for general convex-
concave saddle point problems. SIAM Journal on Optimization, 31(2):1299–1329, 2021.

[21] B. He, S. Xu, and J. Yuan. Indefinite linearized augmented lagrangian method for convex
programming with linear inequality constraints. arXiv preprint arXiv:2105.02425, 2021.

[22] B. He and X. Yuan. On the acceleration of augmented lagrangian method for linearly con-
strained optimization. Optimization online, 3, 2010.

[23] X. He, R. Hu, and Y.-P. Fang. Convergence rate analysis of fast primal-dual methods
with scalings for linearly constrained convex optimization problems. arXiv preprint
arXiv:2103.10118, 2021.

[24] X. He, R. Hu, and Y.-P. Fang. Fast convergence of primal-dual dynamics and algorithms with
time scaling for linear equality constrained convex optimization problems. arXiv preprint
arXiv:2103.12931, 2021.

[25] X. He, R. Hu, and Y.-P. Fang. Inertial accelerated primal-dual methods for linear equality
constrained convex optimization problems. Numerical Algorithms, 9:1669–1690, 2022.

[26] Y. He and R. D. Monteiro. An accelerated hpe-type algorithm for a class of composite convex-
concave saddle-point problems. SIAM Journal on Optimization, 26(1):29–56, 2016.

[27] M. R. Hestenes. Multiplier and gradient methods. Journal of Optimization Theory and Appli-
cations, 4(5):303–320, 1969.

[28] B. Huang, S. Ma, and D. Goldfarb. Accelerated linearized bregman method. Journal of
Scientific Computing, 54(2):428–453, 2013.

[29] L. Jacob, G. Obozinski, and J.-P. Vert. Group lasso with overlap and graph lasso. In Proceedings
of the 26th annual international conference on machine learning, pages 433–440, 2009.

[30] G. M. James, C. Paulson, and P. Rusmevichientong. Penalized and constrained optimization:

27

an application to high-dimensional website advertising. Journal of the American Statistical
Association, 2019.

[31] K. Jiang, D. Sun, and K.-C. Toh. An inexact accelerated proximal gradient method for large
scale linearly constrained convex sdp. SIAM J. on Optimization, 22(3):1042–1064, 2012.

[32] M. Kang, M. Kang, and M. Jung. Inexact accelerated augmented lagrangian methods. Com-
putational Optimization and Applications, 62(2):373–404, 2015.

[33] M. Kang, S. Yun, H. Woo, and M. Kang. Accelerated bregman method for linearly constrained
`1-`2 minimization. Journal of Scientific Computing, 56(3):515–534, 2013.

[34] W. Kong, J. G. Melo, and R. D. Monteiro. Complexity of a quadratic penalty accelerated inex-
act proximal point method for solving linearly constrained nonconvex composite programs.
SIAM Journal on Optimization, 29(4):2566–2593, 2019.

[35] W. Kong and R. D. Monteiro. Accelerated inexact composite gradient methods for nonconvex
spectral optimization problems. Comp. Optimization and Appl., pages 1–43, 2022.

[36] G. Lan. Gradient sliding for composite optimization. Math. Prog., 159(1):201–235, 2016.
[37] G. Lan, S. Lee, and Y. Zhou. Communication-efficient algorithms for decentralized and stochas-

tic optimization. Mathematical Programming, 180(1):237–284, 2020.
[38] G. Lan and R. D. Monteiro. Iteration-complexity of first-order penalty methods for convex

programming. Mathematical Programming, 138(1):115–139, 2013.
[39] G. Lan and R. D. Monteiro. Iteration-complexity of first-order augmented lagrangian methods

for convex programming. Mathematical Programming, 155(1-2):511–547, 2016.
[40] G. Lan and Y. Ouyang. Accelerated gradient sliding for structured convex optimization. Com-

putational Optimization and Applications, 82(2):361–394, 2022.
[41] G. Lan, Y. Ouyang, and Y. Zhou. Graph topology invariant gradient and sampling complexity

for decentralized and stochastic optimization. arXiv preprint arXiv:2101.00143, 2021.
[42] G. Lan, S. Pokutta, Y. Zhou, and D. Zink. Conditional accelerated lazy stochastic gradient

descent. In International Conference on Machine Learning, pages 1965–1974. PMLR, 2017.
[43] G. Lan and Y. Zhou. Conditional gradient sliding for convex optimization. SIAM Journal on

Optimization, 26(2):1379–1409, 2016.
[44] H. Li, C. Fang, and Z. Lin. Convergence rates analysis of the quadratic penalty method and

its applications to decentralized distributed optimization. arXiv:1711.10802, 2017.
[45] H. Li, C. Fang, W. Yin, and Z. Lin. Decentralized accelerated gradient methods with increasing

penalty parameters. IEEE Transactions on Signal Processing, 68:4855–4870, 2020.
[46] H. Li, Z. Lin, and Y. Fang. Variance reduced extra and diging and their optimal acceleration

for strongly convex decentralized optimization. arXiv preprint arXiv:2009.04373, 2020.
[47] Q. Lin and L. Xiao. An adaptive accelerated proximal gradient method and its homotopy

continuation for sparse optimization. Comp. Optimization and Appl., 60(3):633–674, 2015.
[48] Q. Lin and Y. Xu. Inexact accelerated proximal gradient method with line search and reduced

complexity for affine-constrained and bilinear saddle-point structured convex problems.
arXiv preprint arXiv:2201.01169, 2022.

[49] Z. Lu and Z. Zhou. Iteration-complexity of first-order augmented lagrangian methods for convex
conic programming. arXiv preprint arXiv:1803.09941v3, 2018.

[50] A. Nemirovski. Prox-method with rate of convergence o (1/t) for variational inequalities with
lipschitz continuous monotone operators and smooth convex-concave saddle point prob-
lems. SIAM Journal on Optimization, 15(1):229–251, 2004.

[51] A. S. Nemirovskij and D. B. Yudin. Problem complexity and method efficiency in optimization.
1983.

[52] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2003.

[53] Y. Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM Journal on
Optimization, 16(1):235–249, 2005.

[54] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical programming,
103(1):127–152, 2005.

[55] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Program-
ming, 140(1):125–161, 2013.

[56] Y. Ouyang and T. Squires. Universal conditional gradient sliding for convex optimization.
arXiv preprint arXiv:2103.11026, 2021.

[57] Y. Ouyang and Y. Xu. Lower complexity bounds of first-order methods for convex-concave
bilinear saddle-point problems. Mathematical Programming, 185(1):1–35, 2021.

[58] A. Patrascu, I. Necoara, and Q. Tran-Dinh. Adaptive inexact fast augmented lagrangian meth-
ods for constrained convex optimization. Optimization Letters, 11(3):609–626, 2017.

[59] Z. Peng, T. Wu, Y. Xu, M. Yan, and W. Yin. Coordinate-friendly structures, algorithms and
applications. Annals of Mathematical Sciences and Applications, 1(1):57–119, 2016.

[60] M. J. Powell. A fast algorithm for nonlinearly constrained optimization calculations. In Nu-
merical analysis, pages 144–157. Springer, 1978.

28

[61] R. T. Rockafellar. Augmented lagrangians and applications of the proximal point algorithm in
convex programming. Mathematics of Operations Research, 1(2):97–116, 1976.

[62] S. Sabach and M. Teboulle. Faster lagrangian-based methods in convex optimization. SIAM
Journal on Optimization, 32(1):204–227, 2022.

[63] M. Schmidt, N. L. Roux, and F. Bach. Convergence rates of inexact proximal-gradient methods
for convex optimization. arXiv preprint arXiv:1109.2415, 2011.

[64] M. Tao and X. Yuan. Accelerated uzawa methods for convex optimization. Mathematics of
Computation, 86(306):1821–1845, 2017.

[65] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

[66] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via
the fused lasso. Journal of the Royal Statistical Society: Series B, 67(1):91–108, 2005.

[67] Q. Tran-Dinh and V. Cevher. Constrained convex minimization via model-based excessive gap.
Advances in Neural Information Processing Systems, 27:721–729, 2014.

[68] Q. Tran-Dinh and V. Cevher. A primal-dual algorithmic framework for constrained convex
minimization. arXiv preprint arXiv:1406.5403, 2014.

[69] Q. Tran-Dinh, O. Fercoq, and V. Cevher. A smooth primal-dual optimization framework for
nonsmooth composite convex minimization. SIAM J. on Optimization, 28(1):96–134, 2018.

[70] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. submitted
to SIAM Journal on Optimization, 2(3), 2008.

[71] S. Villa, S. Salzo, L. Baldassarre, and A. Verri. Accelerated and inexact forward-backward
algorithms. SIAM Journal on Optimization, 23(3):1607–1633, 2013.

[72] X. Wei, H. Yu, Q. Ling, and M. J. Neely. Solving non-smooth constrained programs with lower
complexity than O (1/ε) a primal-dual homotopy smoothing approach. In NeurIPS, pages
3999–4009, 2018.

[73] Y. Xu. Accelerated first-order primal-dual proximal methods for linearly constrained composite
convex programming. SIAM Journal on Optimization, 27(3):1459–1484, 2017.

[74] Y. Xu. First-order methods for constrained convex programming based on linearized augmented
lagrangian function. Informs Journal on Optimization, 3(1):89–117, 2021.

[75] Y. Xu. Iteration complexity of inexact augmented lagrangian methods for constrained convex
programming. Mathematical Programming, 185(1):199–244, 2021.

[76] Y. Xu. First-order methods for problems with O(1) functional constraints can have almost the
same convergence rate as for unconstrained problems. SIAM Journal on Optimization,
32(3):1759–1790, 2022.

[77] Y. Xu, I. Akrotirianakis, and A. Chakraborty. Proximal gradient method for huberized support
vector machine. Pattern Analysis and Applications, 19(4):989–1005, 2016.

[78] Y. Xu and W. Yin. A block coordinate descent method for regularized multiconvex optimization
with applications to nonnegative tensor factorization and completion. SIAM Journal on
Imaging Sciences, 6(3):1758–1789, 2013.

[79] W. Yin. Analysis and generalizations of the linearized bregman method. SIAM Journal on
Imaging Sciences, 3(4):856–877, 2010.

[80] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms for `1-
minimization with applications to compressed sensing. SIAM Journal on Imaging sciences,
1(1):143–168, 2008.

[81] L. Yuan, J. Liu, and J. Ye. Efficient methods for overlapping group lasso. Advances in neural
information processing systems, 24, 2011.

[82] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B, 68(1):49–67, 2006.

[83] A. Yurtsever, Q. Tran-Dinh, and V. Cevher. A universal primal-dual convex optimization
framework. In Proceedings of the 28th International Conference on Neural Information
Processing Systems-Volume 2, pages 3150–3158, 2015.

[84] R. Zhao. Accelerated stochastic algorithms for convex-concave saddle-point problems. Mathe-
matics of Operations Research, 47(2):1443–1473, 2022.

[85] R. Zhao, W. B. Haskell, and V. Y. Tan. An optimal algorithm for stochastic three-composite op-
timization. In The 22nd International Conference on Artificial Intelligence and Statistics,
pages 428–437. PMLR, 2019.

29

