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Distributed Stochastic Inertial-Accelerated Methods with Delayed Derivatives
for Nonconvex Problems\ast 

Yangyang Xu\dagger , Yibo Xu\dagger , Yonggui Yan\dagger , and Jie Chen\ddagger 

Abstract. Stochastic gradient methods (SGMs) are predominant approaches for solving stochastic optimiza-
tion. On smooth nonconvex problems, a few acceleration techniques have been applied to improve
the convergence rate of SGMs. However, little exploration has been made on applying a certain ac-
celeration technique to a stochastic subgradient method (SsGM) for nonsmooth nonconvex problems.
In addition, few efforts have been made to analyze an (accelerated) SsGM with delayed derivatives.
The information delay naturally happens in a distributed system, where computing workers do not
coordinate with each other. In this paper, we propose an inertial proximal SsGM for solving non-
smooth nonconvex stochastic optimization problems. The proposed method can have guaranteed
convergence even with delayed derivative information in a distributed environment. Convergence
rate results are established for three classes of nonconvex problems: weakly convex nonsmooth prob-
lems with a convex regularizer, composite nonconvex problems with a nonsmooth convex regularizer,

and smooth nonconvex problems. For each problem class, the convergence rate is O(1/K
1
2 ) in the

expected value of the gradient norm square, for K iterations. In a distributed environment, the con-
vergence rate of the proposed method will be slowed down by the information delay. Nevertheless,
the slow-down effect will decay with the number of iterations for the latter two problem classes.
We test the proposed method on three applications. The numerical results clearly demonstrate the
advantages of using the inertial-based acceleration. Furthermore, we observe higher parallelization
speed-up in asynchronous updates over the synchronous counterpart, though the former uses delayed
derivatives. Our source code is available at https://github.com/RPI-OPT/Inertial-SsGM.

Key words. stochastic (sub)gradient method, inertial acceleration, distributed paralellization, delayed
(sub)gradient
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1. Introduction. The stochastic approximation method is one popular approach for solv-
ing stochastic problems. It can be dated back to [52] for solving root-finding problems. Nowa-
days, its first-order versions, such as the stochastic gradient method (SGM), have been exten-
sively used to solve stochastic problems or deterministic problems that involve a huge amount
of data (e.g., see [42, 56]). A standard (or vanilla) SGM often converges slowly. Several ac-
celeration techniques have been used to improve its theoretical and/or empirical convergence
speed (e.g., [3, 15, 24, 62, 65]) for solving convex or smooth nonconvex problems. However,
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for nonsmooth nonconvex problems, it appears that it is still unknown whether a proximal
SGM or a stochastic subgradient method (SsGM) can still have guaranteed convergence if a
certain acceleration technique is applied. In this paper, we give a positive answer to this open
question by using an inertial-type acceleration technique, even if the derivative information
can be delayed in a distributed environment.

Our study focuses on stochastic optimization problems in the form of

(1.1) \phi \ast = minimize
\bfx \in \BbbR n

\phi (x) := F (x) + r(x), with F (x) := \BbbE \xi [f(x; \xi )].

Here, \xi is a random variable that can represent a stochastic scenario or a data point, F is
often called a loss function or a data-fitting term, and r can include a hard constraint and/or
a soft regularization term. We will study a few problem classes, where F is nonconvex and
can be smooth or nonsmooth but r is convex and nondifferentiable if it exists. As a special
case, when \xi is distributed on a finite (but possibly very large scale) dataset, F will reduce
to a finite-sum structured function that appears in any application involving a precollected
dataset.

Applications in the form of (1.1) include the robust phase retrieval that has been used in
imaging and speech processing [16, 17], blind deconvolution in astronomy and computer vision
[8, 27], robust principal component analysis in image deconvolution [7, 9], online nonnegative
matrix factorization in image processing and pattern recognition [21], and sparsity-regularized
deep learning [53]. Specific formulations of some applications are given in section 6.

1.1. Proposed algorithm. We propose to solve (1.1) in a distributed environment. Sup-
pose there are multiple agents. One agent is designated as the master and all the others as
workers. The master performs update to x while the workers compute sample (sub)gradients;
see Figure 1 for an illustration. The master-worker architecture has been adopted in many
works. It can naturally happen, either because data are collected from local devices and then
sent to a central server for processing such as in a sensor network application [38], or because
the precollected dataset is too large to fit on a single machine and must be distributed over
multiple machines.

We assume that each worker can acquire samples of \xi and compute the (sub)gradient of
each sampled function f( \cdot ; \xi ). Each worker sends its computed sample (sub)gradient g to the
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Figure 1. A master-worker architecture. The master performs update to \bfx ; workers compute sample
(sub)gradients.
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master, and the latter updates x by using its received sample (sub)gradients and then sends
the updated x to workers. Our scheme is described in Algorithm 1, which is from the master's
point of view.

Algorithm 1: A distributed stochastic inertial subgradient method for (1.1).

\bfone Initialization: choose x(0) \in dom(r) and set x(1) = x(0)

\bftwo for k = 1, 2, . . . do

\bfthree Let g(k) = \~\nabla f(x(k - \tau k); \xi k) computed by a worker, where \xi k is a sample of \xi and
\tau k measures the possible delay;

\bffour Choose stepsize \alpha k > 0 and inertial parameter \beta k \geq 0;
\bffive Update the variable x by

(1.2) x(k+1) = prox\alpha kr

\Bigl( 
x(k)  - \alpha kg

(k) + \beta k(x
(k)  - x(k - 1))

\Bigr) 
.

Here, \~\nabla h(x) denotes a subgradient of a function h at x, and it reduces to gradient if h is
differentiable at x. In (1.2), the proximal mapping is defined as

(1.3) prox\alpha r(x) = argmin
\bfy \in \BbbR n

\bigl\{ 
r(y) + 1

2\alpha \| y  - x\| 2
\bigr\} 
.

We use k to count the number of updates performed by the master. Notice that the master
will update x once it receives a sample (sub)gradient from one worker, and we do not en-
force coordination between the workers. Hence, the g(k) used in (1.2) may not be a sample
(sub)gradient computed at x(k) but at an outdated iterate x(k - \tau k). This setup with delayed
information is the same as that in [1]. Also, instead of using a single sample, we can take
multiple samples to compute g(k) as the average of the multiple sample (sub)gradients.

Consider a special case, where f( \cdot ; \xi ) is differentiable for each \xi and r(\cdot ) \equiv 0. Then the
update in (1.2) becomes x(k+1) = x(k)  - \alpha kg

(k) + \beta k(x
(k)  - x(k - 1)). Let \beta k = \alpha k

\alpha k - 1
\beta \forall k \geq 1

and for some \beta \in (0, 1). Define a recursive sequence by

(1.4) m(k) = \beta m(k - 1) + (1 - \beta )g(k) \forall k \geq 1 with m(0) = 0.

Then the x-update can be rewritten to

(1.5) x(k+1) = x(k)  - \alpha k
1 - \beta m

(k),

which is often referred to as a momentum SGM in the literature (e.g., [20, 67])
Why use inertial force or momentum? Different from a standard proximal SsGM,

we introduce an inertial force (or heavy-ball momentum term) \beta k(x
(k) - x(k - 1)) in the update

(1.2). If \beta k = 0, the update reduces to the standard proximal SsGM step. The heavy-ball
momentum acceleration technique was first used in [48]. With the inertial force, a heavy-
ball gradient method can mitigate the zigzagging behavior of a standard gradient descent
method and potentially achieve faster convergence. For unconstrained strongly convex qua-
dratic optimization, it has been shown (cf. [50]) that the heavy-ball gradient method can
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achieve an optimal convergence rate. The advantage of using inertia has also been studied
for deterministic composite nonconvex problems and stochastic smooth nonconvex problems.
For example, the work [20] studies a more general momentum-based method, called quasi-
hyperbolic momentum (QHM), which includes the heavy-ball momentum as a special case.
For unconstrained smooth problems, [20] gives a local linear convergence result that suggests
the advantage of adding a heavy-ball momentum term in the update of a standard SGM. In
addition, it provides supporting experiments to demonstrate that the optimal inertial parame-
ter has a positive correlation with the condition number of the underlying problem. Although
a heavy-ball momentum SGM has been extensively used in practice, a theoretical convergence
guarantee is not yet achieved in the literature for nonconvex nonsmooth stochastic problems.
We will provide a novel guideline of parameter setting for the inertial SGM or SsGM along
with a convergence guarantee, even if each g(k) is computed at an outdated iterate. It is
worth mentioning that for unconstrained smooth problems, a heavy-ball momentum SGM
and Nesterov's accelerated gradient (NAG) are different special cases of QHM [20]. Though
beyond the scope of this paper, our work may shed light on the acceleration effect of general
momentum-based methods for nonsmooth nonconvex problems, such as QHM and NAG.

1.2. Related works. Our method has a few key ingredients, including ``stochastic subgra-
dient,"" ``inertia,"" ``nonsmooth nonconvex,"" and ``distributed delayed,"" which differentiate our
method from existing ones. Below we review prior methods that share some ingredients with
ours. We list a few closely related methods with corresponding ingredients in Table 1.

Heavy-ball and inertial methods. Early advances based on the heavy-ball or inertial
momentum acceleration technique date back to [43, 48]. For decades, researchers have been
designing heavy-ball or inertial methods for deterministic optimization [18, 30, 44, 45, 46, 68],
for structured stochastic optimization [19, 31, 32, 49, 61, 63], and even in the framework of
maximal monotone operators [4, 5, 37]. Convergence analysis has been conducted to convex

Table 1
A comparison of ingredients among several algorithms for solving problems in the form of (1.1). In the

second column, ``Property of F"" reflects the underlying assumption of F : ``w.c."" for weak convexity, ``smooth""
for Lipschitz continuous gradient, and ``cvx"" for convexity. In the third column, ``Inertia"" reflects whether
the algorithm introduces inertia. In the fourth column, ``Composite model"" reflects the existence of r in (1.1):
``proj."" indicates a simple convex constraint, and ``prox."" indicates a proximable regularizer. In the fifth column,
``Distributed delayed"" reflects whether the algorithm can handle a distributed setting with delayed (sub)gradient
information. In the last column, convergence rate results for nonconvex models are listed: \tau for the upper bound
on the delay and K for the total number of iterations.

Method Property of F Inertia Composite model Distributed delayed Convergence rate

Mirror descent [1] smooth \& cvx no no yes ---
AdaptiveRevision [35] smooth \& cvx no no yes ---

Random incremental subgrad. [41] cvx no proj. yes ---
AdaDelay [57] smooth \& cvx no proj. yes ---

AsySG-con [28] smooth no no yes (1 + \tau /
\surd 
K)/

\surd 
K

APAM [66]
smooth \& cvx yes proj. yes ---

smooth yes no yes (1 + \tau /K1/4 + \tau 2/
\surd 
K)/

\surd 
K

SHB [33] w.c. yes proj. no 1/
\surd 
K

This paper
w.c. yes proj. \& prox. yes (1 + \tau /

\surd 
K + \tau )/

\surd 
K

smooth yes proj. \& prox. yes (1 + \tau 2/
\surd 
K)/

\surd 
K

smooth yes no yes (1 + \tau /
\surd 
K)/

\surd 
K
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problems and also nonconvex problems. For a convex deterministic model, [59, 60] provide
last-iterate convergence for inertial methods. For a convex stochastic model, [40] proposes
an inertial mirror descent method and establishes an O(1/

\surd 
K) convergence rate result. Un-

der a bounded-gradient assumption, [67] provides a unified convergence analysis of stochastic
momentum methods for unconstrained smooth nonconvex stochastic optimization. [19] incor-
porates momentum acceleration in SGM and achieves an optimal oracle complexity result for
(1.1) when F is smooth. The work [58] studies how the heavy-ball technique can help SGM
escape saddle points.

Distributed/parallel stochastic methods with delayed (sub)gradient informa-
tion. There have been quite a few works about distributed delayed or asynchronous (async)
parallel SGMs for convex or nonconvex problems and SsGMs for convex problems.

Similar to our method, [1] also adopts a master-worker setup. It analyzes a distributed

delayed SGM for convex problems and establishes a convergence rate of O(1+\tau 2/
\surd 
K\surd 

K
), where

\tau denotes the maximum delay of stochastic gradient and K is the total number of updates.
Under a shared-memory setting, [51] proposes an async-parallel SGM for strongly convex prob-

lems with a special sparsity structure and establishes a convergence rate of O(1+\tau 2/
\surd 
n

K lnK),
where n is the number of coordinates. [35] gives delay-tolerant algorithms for async distrib-
uted convex online learning problems. Its algorithms can achieve a regret of O(

\sqrt{} 
(1 + \tau )K)

if a uniform upper bound \tau on the delay is known and O((1 + \tau )
\surd 
K) otherwise. For smooth

convex stochastic problems, [6, 57] adapt the stepsize of an async-parallel SGM to the stale-
ness of stochastic gradient. More precisely, let \tau k denote the actual delay at iteration k. The
stepsize of the methods in [6, 57] depends on \tau k. [57] analyzes its projected stochastic gradient
scheme under the assumption that the delay has a bounded expectation \BbbE [\tau k] = \=\tau < \infty and

a bounded second moment \BbbE [\tau 2k ] = \Omega (\=\tau 2). The convergence rate is O(
\surd 
1+\=\tau +\=\tau 4/

\surd 
K\surd 

K
) if \=\tau is

known and O(1+\=\tau +\=\tau 4/
\surd 
K\surd 

K
) otherwise. Under the assumption \BbbE [\tau k] = \=\tau , [6] achieves a rate of

O(1+\=\tau 2/K
K lnK) for unconstrained strongly convex problems.

Async-parallel SGMs have also been studied for smooth nonconvex problems. For example,
[28] analyzes an async-parallel SGM for unconstrained stochastic problems and obtains a

convergence rate of O(1+\tau /
\surd 
K\surd 

K
) in terms of the expected value of gradient norm square; [23]

analyzes an async-parallel variance-reduced SGM for a finite-sum structured problem and
shows a sublinear convergence when \tau = O(1); [66] focuses on async distributed and parallel
adaptive (i.e., quasi-Newton-type) SGM for unconstrained stochastic problems and gives a

convergence rate of O(1+\tau /K1/4+\tau 2/
\surd 
K\surd 

K
). The studies on delayed SsGMs are still limited and

only for convex problems. For example, [41] proposes an async projected SsGM and shows an
almost-sure subsequence convergence result but with no convergence rate result.

The distributed/parallel methods mentioned above either adopt a master-worker setup
(i.e., centralized) or assume a shared-memory setting. Many other works about SGMs or
SsGMs are built on a decentralized setting, where multiple agents are distributed on a con-
nected network and can communicate only with their neighbors but not a central master
agent. Extending our discussions to the decentralized setting is beyond the scope of this
paper. Interested readers can refer to [13, 29, 34, 64] and the references therein.
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Most closely related works. The methods in [10, 33] are perhaps the most closely
related to ours. [10] gives a decentralized projected deterministic subgradient method for
weakly convex optimization. It establishes a sublinear convergence result for the deterministic
method. A stochastic variant is also given in [10] with subsequence convergence but no
convergence rate. In comparison to [10], we incorporate the inertial-force acceleration in
a proximal SsGM to achieve empirically faster convergence, and in addition, we allow for
delayed subgradient and can still achieve sublinear convergence. [33] proposes a projected
inertial SsGM for weakly convex stochastic optimization. The method appears similar to
Algorithm 1. However, its analysis is completely different from ours, and it does not consider
the delayed case. More importantly, its theoretical result is not established on the inertial-
generated sequence. This is explained as follows. The update of the method in [33] is

(1.6) x(k+1) = ProjX

\Bigl( 
x(k)  - \alpha \beta g(k) + (1 - \beta )(x(k)  - x(k - 1))

\Bigr) 
,

where ProjX denotes the projection onto a closed convex set X. Its analysis is only on
the choice of \alpha \beta = \Theta ( 1

K ) for a given maximum number K of updates and 1  - \beta = 1  - 
1\surd 
K
. The sequence generated from (1.6) is similar to that that we generate from (1.2), i.e.,

inertial-generated sequence. However, the theoretical result in [33] is not about \{ x(k)\} but
the extrapolated sequence \{ \=x(k) := x(k) + 1 - \beta 

\beta (x(k)  - x(k - 1))\} . There are two potential issues

in analyzing the property of \{ \=x(k)\} . First, if X \not = \BbbR n, the sequence may not be in X. In fact,
\=x(k) can be far away from X if x(k)  - x(k - 1) \not = 0 as 1 - \beta 

\beta =
\surd 
K  - 1 is big. Second, if X = \BbbR n,

it holds that \=x(k+1) = \=x(k) - \alpha g(k), and in this case, \{ \=x(k)\} is more like a noninertial sequence,
as compared to the sequence generated by the momentum SGM in (1.5). In contrast, our
analysis will be on the inertial-generated sequence.

1.3. Contributions.
\bullet We propose a proximal inertial stochastic subgradient method in Algorithm 1 for solv-
ing nonconvex stochastic problem (1.1). The method can tolerate a delay of derivative
information in a distributed environment. To the best of our knowledge, it is the
first method that applies the inertial-acceleration technique in a proximal stochastic
subgradient method for nonconvex problems.

\bullet We provide convergence rate analysis of the proposed method for three problem classes
in the form of (1.1). For each problem class, the method, with an appropriate setting
of parameters, enjoys an O( 1\surd 

K
) convergence rate in terms of the expected value

of a gradient norm square, where K is the number of total iterations. First, when
F is weakly convex (see Definition 2.1 below) and possibly nondifferentiable and r
is convex, we establish the O( 1\surd 

K
) convergence rate by choosing \alpha k = \Theta ( 1\surd 

K
) and

\beta k = \Theta ( 1
K1/4 ) \forall k \leq K, provided that the delay \tau k follows a static distribution and is

bounded by \tau = O(1). Second, when F is smooth but possibly nonconvex and r is
convex, we obtain the O( 1\surd 

K
) convergence rate by the same choice of \alpha k and \beta k as in

the first case, under a relaxed condition on \tau k, i.e., \tau k = O(K1/4) \forall k. Third, for the
case of a smooth F and r \equiv 0, we obtain the O( 1\surd 

K
) convergence rate with the choice

of \alpha k = \Theta ( 1\surd 
K
) and \beta k = \beta \in (0, 1) \forall k \leq K, provided that \tau k = O(

\surd 
K) \forall k. Hence,

the proposed method can tolerate a larger delay if the problem has a nicer structure.
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\bullet We conduct numerical experiments of the proposed method on three applications to
demonstrate the effect of the inertial acceleration and also to demonstrate the higher
parallelization speed-up by the asynchronous implementation over a synchronous coun-
terpart.

1.4. Notation and organization. We use lowercase bold letters x,y, . . . for vectors. A
superscript (k) is used to specify the iterate, i.e., x(k) denotes the kth iterate. We use \| \cdot \| to
denote the Euclidean norm of a vector and also the spectral norm of a matrix. We use the
big-O notation with the standard meaning to compare two quantities that can both approach
infinity or zero. The randomness of Algorithm 1 comes from the samples \{ \xi k\} k\geq 1. In our
analysis, we use \BbbE k for the conditional expectation with the history until the kth iteration,
i.e., \BbbE k[ \cdot ] = \BbbE [ \cdot | \{ \xi j\} k - 1

j=1 ].
The rest of the paper is organized as follows. In section 2, we give some basic concepts

and preliminary results. The detailed analysis and convergence rate results are shown in
sections 3--5 for three different problem classes. Numerical results are given in section 6.
Finally, section 7 concludes the paper.

2. Preliminaries. In this section, we give some basic concepts and preliminary results
that will be used in our analysis. For a function \phi : \BbbR n \rightarrow \BbbR \cup \{ \infty \} , we let \partial \phi (x) denote its
subdifferential at x, i.e., the set of subgradients, which consists of all vectors v satisfying

\phi (y) \geq \phi (x) + \langle v,y  - x\rangle + o (\| y  - x\| ) as y \rightarrow x.

The definition and results below can be found in [11, 14].

Definition 2.1. A function \phi is \rho -weakly convex if \phi (\cdot ) + \rho 
2\| \cdot \| 2 is convex for some \rho > 0.

Lemma 2.2. If \phi is \rho -weakly convex, then

(2.1) \phi (y) \geq \phi (x) + \langle v,y  - x\rangle  - \rho 
2 \| y  - x\| 2 \forall x, y \in dom(\phi ), \forall v \in \partial \phi (x),

and

(2.2) \langle v  - w,x - y\rangle \geq  - \rho \| y  - x\| 2 \forall x, y \in dom(\phi ), \forall v \in \partial \phi (x),w \in \partial \phi (y).

The class of weakly convex functions is rather big. It includes all convex functions and all
smooth functions. In addition, the composition function h(c(x)) is also weakly convex, if h :
\BbbR m \rightarrow \BbbR is convex and Lipschitz continuous and c : \BbbR n \rightarrow \BbbR m is smooth. Specific applications
that have weakly convex objectives include nonlinear least squares, phase retrieval, robust
PCA, robust low rank matrix recovery, optimization of the conditional value-at-risk, and
graph synchronization. More examples can be found in [14].

A key tool used in recent works (e.g., [2, 10, 11, 33, 39]) about stochastic weakly convex
minimization is the Moreau envelope [36], which is defined as follows.

Definition 2.3. For a \rho -weakly convex function \phi and \lambda \in (0, 1/\rho ), the Moreau envelope
\phi \lambda (\cdot ) is defined as

(2.3) \phi \lambda (x) = min
\bfy 

\Bigl\{ 
\phi (y) + 1

2\lambda \| y  - x\| 2
\Bigr\} 
.
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The Moreau envelope is useful to characterize near-stationarity of a point x because of
the results in the following lemma. From (2.4), we notice that if \| \nabla \phi \lambda (x)\| is small, then\widetilde x := prox\lambda \phi (x) will be a near-stationary point of \phi and x is close to \widetilde x.

Lemma 2.4. Let \phi be \rho -weakly convex; then for any \lambda \in (0, 1/\rho ), the Moreau envelope \phi \lambda 

is smooth with gradient given by

\nabla \phi \lambda (x) = \lambda  - 1
\bigl( 
x - \widetilde x\bigr) ,

where \widetilde x := prox\lambda \phi (x). Moreover,

(2.4) \| x - \widetilde x\| = \lambda \| \nabla \phi \lambda (x)\| , \phi (\widetilde x) \leq \phi (x), and dist(0, \partial \phi (\widetilde x)) \leq \| \nabla \phi \lambda (x)\| .

Besides the class of weakly convex functions, we will also consider smooth functions in our
analysis, for which we are able to obtain stronger theoretical results. By slightly abusing the
notation, we also use \rho to denote the Lipschitz constant of a smooth function, as a \rho -smooth
function must be \rho -weakly convex.

Definition 2.5. A function \phi is \rho -smooth, if it is differentiable, and

\| \nabla \phi (x) - \nabla \phi (y)\| \leq \rho \| x - y\| \forall x,y \in \BbbR n.

If \phi is \rho -smooth, then

(2.5) | \phi (x) - \phi (y) - \langle \nabla \phi (y),x - y\rangle | \leq \rho 
2\| x - y\| 2 \forall x,y \in \BbbR n.

3. Convergence analysis for nonsmooth weakly convex problems. In this section, we
analyze Algorithm 1 for problems in the form of (1.1), where F is possibly nondifferentiable.
Throughout this section, we make the following assumptions.

Assumption 1 (weak convexity). F is \rho -weakly convex with \rho > 0.

Assumption 2 (unbiased subgradient). g(k) is an unbiased stochastic subgradient of F at
x(k - \tau k) for each k, i.e., \BbbE \xi k [g

(k)] \in \partial F (x(k - \tau k)).

Assumption 3 (bounded subgradient). There is a real number M \geq 0 such that
\BbbE \xi \| \~\nabla f(x; \xi )\| 2 \leq M2 \forall x \in dom(r) and all subgradient \~\nabla f(x; \xi ) \in \partial f(x; \xi ).

3.1. Preparatory lemmas. For a fixed \rho > \rho , we denote

v(k) = \BbbE \xi k

\bigl[ 
g(k)

\bigr] 
\in \partial F (x(k - \tau k)), \widetilde x(k) = prox\phi /\rho (x

(k)),(3.1a)

and choose

\widetilde v(k) \in \partial F (\widetilde x(k)) such that \rho (x(k)  - \widetilde x(k)) \in \partial r(\widetilde x(k)) + \widetilde v(k).(3.1b)

Note that the existence of \widetilde v(k) is guaranteed from the definition of \widetilde x(k). By Assumption 3, it
holds that

(3.2) \BbbE \xi k\| g(k)\| 2 \leq M2, \| v(k)\| 2 \leq M2, and \| \widetilde v(k)\| 2 \leq M2.

The next result is from [11, Lemma 3.2]. Its proof only relies on the definition of \widetilde x(k) and
the choice of \widetilde v(k). Hence, the result still holds for our case, though the algorithm in [11, Lemma
3.2] does not have an inertial term in its update.
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Lemma 3.1. Let \widetilde x(k) and \widetilde v(k) be defined as in (3.1a) and (3.1b). Then

(3.3) \widetilde x(k) = prox\alpha kr

\bigl( 
\alpha k\rho x

(k)  - \alpha k\widetilde v(k) + (1 - \alpha k\rho )\widetilde x(k)
\bigr) 
.

The next lemma extends the hypomonotonicity property of a weakly convex function, in
order to deal with the case with delayed subgradients.

Lemma 3.2. Let \widetilde x(k), v(k), and \widetilde v(k) be defined as in (3.1). Then under Assumption 1, it
holds that
(3.4)

 - 
\bigl\langle 
x(k)  - \widetilde x(k),v(k)  - \widetilde v(k)

\bigr\rangle 
\leq F (x(k)) - F (x(k - \tau k)) + \rho 

2\| x(k)  - \widetilde x(k)\| 2 + \rho 
2\| x(k - \tau k)  - \widetilde x(k)\| 2  - 

\bigl\langle 
x(k)  - x(k - \tau k),v(k)

\bigr\rangle 
.

Proof. From the \rho -weak convexity of F , it follows that

(3.5)
\bigl\langle 
x(k)  - \widetilde x(k), \widetilde v(k)

\bigr\rangle 
\leq F (x(k)) - F (\widetilde x(k)) + \rho 

2\| x(k)  - \widetilde x(k)\| 2

and

(3.6)  - 
\bigl\langle 
x(k - \tau k)  - \widetilde x(k),v(k)

\bigr\rangle 
\leq F (\widetilde x(k)) - F (x(k - \tau k)) + \rho 

2\| x(k - \tau k)  - \widetilde x(k)\| 2.

Hence, we obtain the desired result by adding the two inequalities in (3.5) and (3.6), and also
noticing

 - 
\bigl\langle 
x(k)  - \widetilde x(k),v(k)  - \widetilde v(k)

\bigr\rangle 
=
\bigl\langle 
x(k)  - \widetilde x(k), \widetilde v(k)

\bigr\rangle 
 - 
\bigl\langle 
x(k - \tau k)  - \widetilde x(k),v(k)

\bigr\rangle 
 - 
\bigl\langle 
x(k)  - x(k - \tau k),v(k)

\bigr\rangle 
.

This completes the proof.

The result in the next lemma establishes a descent property of the iterate sequence from
Algorithm 1 by relating it to the virtual sequence \{ \widetilde x(k)\} . It extends the result in [11, Lemma
3.3].

Lemma 3.3. Let \rho \in (\rho , 2\rho ] and \alpha k \in (0, 1/\rho ] \forall k. Under Assumptions 1--3, the iterate
sequence \{ x(k)\} from Algorithm 1 with stepsize sequence \{ \alpha k\} and inertial parameter \{ \beta k\} 
satisfies
(3.7)

\BbbE \xi k\| x(k+1)  - \widetilde x(k)\| 2 \leq 
\bigl( 
1 - 2\alpha k(\rho  - \rho ) + ck

\bigr) 
\| x(k)  - \widetilde x(k)\| 2 + (2 + 1

ck
)\beta 2

k\| x(k)  - x(k - 1)\| 2

+ 8\alpha 2
kM

2 + 2\alpha k(1 - \alpha k\rho )\widehat \scrE k,
where \widetilde x(k) is defined in (3.1a), ck is any positive number, and

(3.8) \widehat \scrE k := F (x(k)) - F (x(k - \tau k)) - \rho 
2\| x(k) - \widetilde x(k)\| 2+ \rho 

2\| x(k - \tau k) - \widetilde x(k)\| 2 - 
\bigl\langle 
x(k) - x(k - \tau k),v(k)

\bigr\rangle 
.

The next lemma will be used to bound
\sum K

k=1 \| x(k+1)  - x(k)\| 2 for any given integer K.

Lemma 3.4. Let \{ x(k)\} be generated from Algorithm 1. Under Assumptions 1 and 3, it
holds for any \gamma > 0 that
(3.9)\bigl( 
1 - \gamma  - \alpha k\rho 

2  - \beta k
2

\bigr) 
\BbbE \| x(k+1) - x(k)\| 2 \leq \alpha k\BbbE 

\bigl( 
\phi (x(k)) - \phi (x(k+1))

\bigr) 
+ \beta k

2 \BbbE \| x(k) - x(k - 1)\| 2+ \alpha 2
kM

2

\gamma .
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Proof. By the convexity of r, we have
\bigl\langle 
x(k) - x(k+1), \~\nabla r(x(k+1))

\bigr\rangle 
\leq r(x(k)) - r(x(k+1)). In

addition, it follows from (1.2) that 0 \in \alpha k\partial r(x
(k+1))+x(k+1) - x(k)+\alpha kg

(k) - \beta k(x
(k) - x(k - 1)).

Hence,

(3.10)
\bigl\langle 
x(k+1)  - x(k),x(k+1)  - x(k) + \alpha kg

(k)  - \beta k(x
(k)  - x(k - 1))

\bigr\rangle 
\leq \alpha k

\bigl( 
r(x(k)) - r(x(k+1))

\bigr) 
.

By the \rho -weak convexity of F , it holds that\bigl\langle 
x(k+1)  - x(k), \~\nabla F (x(k+1))

\bigr\rangle 
\geq F (x(k+1)) - F (x(k)) - \rho 

2\| x(k+1)  - x(k)\| 2,

and thus

(3.11)

\bigl\langle 
x(k+1)  - x(k), \alpha kg

(k)
\bigr\rangle 
\geq \alpha k

\bigl\langle 
x(k+1)  - x(k),g(k)  - \~\nabla F (x(k+1))

\bigr\rangle 
+ \alpha k

\bigl( 
F (x(k+1)) - F (x(k)) - \rho 

2
\| x(k+1)  - x(k)\| 2

\bigr) 
.

Plugging (3.11) into (3.10) and rearranging terms give
(3.12)\bigl( 

1 - \alpha k\rho 
2

\bigr) 
\| x(k+1)  - x(k)\| 2 \leq \alpha k

\bigl( 
\phi (x(k)) - \phi (x(k+1))

\bigr) 
+ \beta k

\bigl\langle 
x(k+1)  - x(k),x(k)  - x(k - 1)

\bigr\rangle 
 - \alpha k

\bigl\langle 
x(k+1)  - x(k),g(k)  - \~\nabla F (x(k+1))

\bigr\rangle 
.

Now using Assumption 3 and the Young's inequality, we have\bigl( 
1 - \alpha k\rho 

2

\bigr) 
\BbbE \| x(k+1)  - x(k)\| 2

\leq \alpha k\BbbE 
\bigl( 
\phi (x(k)) - \phi (x(k+1))

\bigr) 
+ \beta k

2 \BbbE 
\bigl( 
\| x(k+1)  - x(k)\| 2 + \| x(k)  - x(k - 1)\| 2

\bigr) 
+ \gamma \BbbE \| x(k+1)  - x(k)\| 2 + \alpha 2

kM
2

\gamma .

Rearranging terms in the above inequality gives the desired result.

3.2. Convergence rate results. In this subsection, we establish the convergence rate
results of Algorithm 1 for nonsmooth weakly convex problems by using the lemmas in the
previous subsection. We first give a generic result as follows.

Theorem 3.5. Given a positive integer K, let \{ x(k)\} Kk=1 be generated from Algorithm 1 with
a stepsize sequence \{ \alpha k\} and inertial parameter sequence \{ \beta k\} . Under Assumptions 1--3, let
\rho \in (\rho , 2\rho ] and assume \alpha k \in (0, 1/\rho ] \forall k. Then
(3.13)

\BbbE 
\bigm\| \bigm\| \nabla \phi 1/\rho (x

(T ))
\bigm\| \bigm\| 2 \leq 2\rho 

(\rho  - \rho )
\sum K

k=k0
\alpha k

\Bigl[ 
\BbbE 
\bigl[ 
\phi 1/\rho (x

(k0)) - \phi \ast \bigr] + \rho 
2

\sum K
k=k0

(2 + 2
\alpha k(\rho  - \rho ) )\beta 

2
k\BbbE \| x(k)  - x(k - 1)\| 2

+ 4\rho M2
\sum K

k=k0
\alpha 2
k +

\sum K
k=k0

\alpha k\rho (1 - \alpha k\rho )\BbbE [\scrE k]
\Bigr] 
,

where k0 \geq 1 is an integer, T is randomly selected from \{ k0, . . . ,K\} by the distribution

(3.14) Prob(T = k) = \alpha k\sum K
j=k0

\alpha j
\forall k = k0, . . . ,K,

and

(3.15) \scrE k := F (x(k)) - F (x(k - \tau k)) +
\bigl( \rho 
2 + \rho 2

\rho  - \rho 

\bigr) 
\| x(k - \tau k)  - x(k)\| 2  - 

\bigl\langle 
x(k)  - x(k - \tau k),v(k)

\bigr\rangle 
.
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Proof. By the definition of \phi \lambda in (2.3) and Lemma 3.3, we have

\BbbE \xi k

\bigl[ 
\phi 1/\rho (x

(k+1))
\bigr] (3.16)

\leq \BbbE \xi k

\bigl[ 
\phi (\widetilde x(k)) + \rho 

2\| x(k+1)  - \widetilde x(k)\| 2
\bigr] 

\leq \phi (\widetilde x(k)) + \rho 
2

\bigl[ \bigl( 
1 - 2\alpha k(\rho  - \rho ) + ck

\bigr) 
\| x(k)  - \widetilde x(k)\| 2 + (2 + 1

ck
)\beta 2

k\| x(k)  - x(k - 1)\| 2 + 8\alpha 2
kM

2
\bigr] 

+ \alpha k\rho (1 - \alpha k\rho )\widehat \scrE k
= \phi 1/\rho (x

(k)) - \rho 
2 (2\alpha k(\rho  - \rho ) - ck) \| x(k)  - \widetilde x(k)\| 2 + \rho 

2(2 +
1
ck
)\beta 2

k\| x(k)  - x(k - 1)\| 2 + 4\rho \alpha 2
kM

2

+ \alpha k\rho (1 - \alpha k\rho )\widehat \scrE k,
where \widehat \scrE k is defined in (3.8). By the Young's inequality, we have

 - \rho 
2\| x(k)  - \widetilde x(k)\| 2 + \rho 

2\| x(k - \tau k)  - \widetilde x(k)\| 2 = \rho 
2\| x(k - \tau k)  - x(k)\| 2 + \rho \langle x(k - \tau k)  - x(k),x(k)  - \widetilde x(k)\rangle 

\leq 
\bigl( \rho 
2 + \rho 2

\=\rho  - \rho 

\bigr) 
\| x(k - \tau k)  - x(k)\| 2 + \=\rho  - \rho 

4 \| x(k)  - \widetilde x(k)\| 2.

Using the definition of \widehat \scrE k in (3.8) and substituting the inequality above into (3.16), we have
from 1 - \alpha k\rho \leq 1 and the definition of \scrE k in (3.15) that

\BbbE \xi k

\bigl[ 
\phi 1/\rho (x

(k+1))
\bigr] (3.17)

\leq \phi 1/\rho (x
(k)) - \rho 

2

\bigl( 
3
2\alpha k(\rho  - \rho ) - ck

\bigr) 
\| x(k)  - \widetilde x(k)\| 2 + \rho 

2(2 +
1
ck
)\beta 2

k\| x(k)  - x(k - 1)\| 2 + 4\rho \alpha 2
kM

2

+ \alpha k\rho (1 - \alpha k\rho )\scrE k.

Taking full expectation and summing the inequality in (3.17) over k = k0, . . . ,K, we have

\BbbE 
\bigl[ 
\phi 1/\rho (x

(K+1))
\bigr] 

\leq \BbbE 
\bigl[ 
\phi 1/\rho (x

(k0))
\bigr] 
 - \rho 

2

\sum K
k=k0

\bigl( 
3
2\alpha k(\rho  - \rho ) - ck

\bigr) 
\BbbE \| x(k)  - \widetilde x(k)\| 2

+ \rho 
2

\sum K
k=k0

(2 + 1
ck
)\beta 2

k\BbbE \| x(k)  - x(k - 1)\| 2 + 4\rho M2
\sum K

k=k0
\alpha 2
k +

\sum K
k=k0

\alpha k\rho (1 - \alpha k\rho )\scrE k.

Choose ck = 1
2\alpha k(\rho  - \rho ) \forall k \geq 1 and rearrange the above inequality. We obtain

(3.18)

\rho (\rho  - \rho )
2

\sum K
k=k0

\alpha k\BbbE \| x(k)  - \widetilde x(k)\| 2 \leq \BbbE 
\bigl[ 
\phi 1/\rho (x

(k0)) - \phi \ast \bigr] + 4\rho M2
\sum K

k=k0
\alpha 2
k

+ \rho 
2

\sum K
k=k0

(2 + 2
\alpha k(\rho  - \rho ))\beta 

2
k\BbbE \| x(k)  - x(k - 1)\| 2 +\sum K

k=k0
\alpha k\rho (1 - \alpha k\rho )\BbbE [\scrE k],

where we have used the fact \phi 1/\rho (x) \geq \phi \ast \forall x \in dom(r). From Lemma 2.4, we have \| x(k)  - \widetilde x(k)\| 2 = \| \nabla \phi 1/\rho (x
(k))\| 2/\rho 2. Hence, plugging this equation into the left-hand side of (3.18)

and using the choice of T in (3.14), we obtain the desired result.

To show the convergence rate in (3.13), it suffices to bound the summation terms on
\BbbE \| x(k)  - x(k - 1)\| 2 and the delay term \BbbE [\scrE k]. If the delay is arbitrary, it is impossible to have
convergence, and thus a certain condition on \tau k is needed. For nonsmooth problems, we make
the following assumption.
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Assumption 4 (stochastic delay). There is an integer \tau such that the staleness \tau k follows
the distribution

Prob(\tau k = j) = pj for j = 0, 1, . . . , \tau \forall k.

If the computing environment does not change during all the iterations, the assumption will
hold. In addition, one can track the delay at the master node and thus estimate the probability.
However, we do not need to know the values of \{ pj\} or \tau in the computation and analysis,
but we only require their existence. A similar assumption has been made in [22, 47, 57].

In the rest of this section, we show convergence rate results separately for the case with a
fixed stepsize sequence and the one with a varying stepsize sequence.

3.2.1. Convergence rate with a fixed stepsize. In this subsubsection, we consider the
case where \alpha k = \alpha 1 and \beta k = \beta 1 \forall k \geq 1. In this case, it is easy to bound the summation term
about \BbbE \| x(k)  - x(k - 1)\| 2.

Lemma 3.6. Given a positive integer K, let \alpha k = \alpha \surd 
K

\forall k = 1, . . . ,K for some \alpha > 0.

Also, let \beta k = \beta 
K1/4 \forall k for some nonnegative \beta such that \beta 

K1/4 < 1  - \alpha \rho 

2
\surd 
K
. Then under

Assumptions 1 and 3, it holds that

\sum K
k=1 \BbbE \| x(k+1)  - x(k)\| 2 \leq \alpha 

\gamma 
\surd 
K

\bigl( 
\phi (x(1)) - \phi \ast \bigr) + \alpha 2M2

\gamma 2 , where \gamma = 1
2

\bigl( 
1 - \alpha \rho 

2
\surd 
K

 - \beta 
K1/4

\bigr) 
.

(3.19)

Proof. Let \gamma = 1
2

\bigl( 
1 - \alpha \rho 

2
\surd 
K

 - \beta 
K1/4

\bigr) 
in (3.9) and sum it up over k. We have

\bigl( 
1 - \gamma  - \alpha \rho 

2
\surd 
K

 - \beta 
2K1/4

\bigr) \sum K
k=1 \BbbE \| x(k+1)  - x(k)\| 2

\leq \alpha \surd 
K
\BbbE 
\bigl( 
\phi (x(1)) - \phi (x(K+1))

\bigr) 
+ \beta 

2K1/4

\sum K
k=1 \BbbE \| x(k)  - x(k - 1)\| 2 + \alpha 2M2

\gamma .

Since x(0) = x(1) and \phi (x(K+1)) \geq \phi \ast , the above inequality together with the choice of \gamma 
implies the desired result. We complete the proof.

When a fixed stepsize sequence is used, we can bound
\sum K

k=1 \BbbE [\scrE k] as in the next lemma.

Lemma 3.7. Let \scrE k be defined in (3.15). Given a positive integer K, let \alpha k = \alpha \surd 
K

\forall k =

1, . . . ,K for some \alpha > 0. Also, let \beta k = \beta 
K1/4 \forall k for some nonnegative \beta such that \beta 

K1/4 <
1 - \alpha \rho 

2
\surd 
K
. Suppose that F (x) is upper bounded by CF \forall x \in dom(r). Then under Assumptions 1,

3, and 4, we have
(3.20)\sum K

k=1 \BbbE [\scrE k] \leq \tau max
\bigl\{ 
0, - F (x(1))

\bigr\} 
+ \tau CF + \tau 2

\bigl( \rho 
2 + \rho 2

\=\rho  - \rho 

\bigr) \Bigl( 
\alpha 

\gamma 
\surd 
K

\bigl( 
\phi (x(1)) - \phi \ast \bigr) + \alpha 2M2

\gamma 2

\Bigr) 
+M\tau 

\surd 
K
\sqrt{} 

\alpha 
\gamma 
\surd 
K

\bigl( 
\phi (x(1)) - \phi \ast 

\bigr) 
+ \alpha 2M2

\gamma 2 ,

where \gamma = 1
2

\bigl( 
1 - \alpha \rho 

2
\surd 
K

 - \beta 
K1/4

\bigr) 
.

Now from Theorem 3.5 and Lemmas 3.6 and 3.7, we can easily show the following conver-
gence rate result.
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Theorem 3.8 (convergence rate with fixed stepsize). Under Assumptions 1--4, let \rho \in (\rho , 2\rho ]
and K be the maximum number of iterations. Let \{ x(k)\} be the sequence from Algorithm 1
with \alpha k = \alpha \surd 

K
and \beta k = \beta 

K1/4 ,\forall k = 1, . . . ,K for some \alpha > 0 and nonnegative \beta such that
\alpha \surd 
K

\in (0, 1/\rho ] and \beta 
K1/4 < 1 - \alpha \rho 

2
\surd 
K
. Suppose that F (x) is upper bounded by CF \forall x \in dom(r).

Then
(3.21)

\BbbE 
\bigm\| \bigm\| \nabla \phi 1/\rho (x

(T ))
\bigm\| \bigm\| 2 \leq 2\rho 

(\rho  - \rho )\alpha 
\surd 
K

\biggl[ 
\rho 
2(2 +

2
\surd 
K

\alpha (\rho  - \rho ))
\beta 2
\surd 
K

\Bigl( 
\alpha 

\gamma 
\surd 
K

\bigl( 
\phi (x(1)) - \phi \ast \bigr) + \alpha 2M2

\gamma 2

\Bigr) 
+ 4\rho M2\alpha 2

+ \alpha \rho \tau \surd 
K

\Bigl( 
max

\bigl\{ 
0, - F (x(1))

\bigr\} 
+ CF + \tau 

\bigl( \rho 
2 + \rho 2

\=\rho  - \rho 

\bigr) \bigl( 
\alpha 

\gamma 
\surd 
K

\bigl( 
\phi (x(1)) - \phi \ast \bigr) + \alpha 2M2

\gamma 2

\bigr) \Bigr) 
+ \phi 1/\rho (x

(1)) - \phi \ast +M\alpha \rho \tau 
\sqrt{} 

\alpha 
\gamma 
\surd 
K

\bigl( 
\phi (x(1)) - \phi \ast 

\bigr) 
+ \alpha 2M2

\gamma 2

\biggr] 
,

where \gamma = 1
2

\bigl( 
1 - \alpha \rho 

2
\surd 
K

 - \beta 
K1/4

\bigr) 
and T is randomly selected from \{ 1, . . . ,K\} by (3.14).

Proof. Notice
\sum K

k=1 \alpha k = \alpha 
\surd 
K and

\sum K
k=1 \alpha 

2
k = \alpha 2. Then the inequality in (3.21) directly

follows by substituting (3.19) and (3.20) into (3.13) with k0 = 1, and also noticing 1 - \alpha \rho \surd 
K

\leq 1.

Remark 3.9. The result in (3.21) indicates a convergence rate of O(1/
\surd 
K). For the no-

delay case (i.e., \tau = 0), the assumption F (x) \leq CF \forall x \in dom(r) is not needed. The delay case
has the same-order convergence as the no-delay case. However, their constants are different.
Compared to the no-delay case, the delay one has a few additional terms dependent on \tau . The
term dependent on \tau in the second line on the right-hand side of (3.21) is negligible if K is a
large number, but the term in the third line will not vanish as K \rightarrow \infty . In other words, the
delay always has a nonnegligible effect on the convergence rate. To take a clearer look at the
effect, let \rho = 2\rho , \beta = 0, and K \rightarrow \infty . Then \gamma \rightarrow 1

2 , and the terms enclosed in the big square

brackets of (3.21) roughly equal \phi 1/\rho (x
(1)) - \phi \ast + 8\rho \alpha 2M2 + 4\rho \alpha 2M2\tau . Hence, the delay can

slow down the convergence rate by \tau 
\tau +2+(\phi 1/\rho (\bfx 

(1)) - \phi \ast )/(4\rho \alpha 2M2)
. This indicates that the delay

will have a smaller effect if \rho is smaller (i.e., F is closer to convexity) or if \alpha is smaller (i.e., a
smaller learning rate is used).

3.2.2. Convergence rate with varying stepsizes. When \alpha k varies with k,
\sum 

k \alpha k

\bigl( 
\phi (x(k)) - 

\phi (x(k+1))
\bigr) 
may not be a telescoping series any more, so we cannot directly obtain a bound as

in (3.19) by summing up (3.9). Below we make an additional assumption and show a bound
on
\sum K

k=1 \| x(k+1)  - x(k)\| 2 when \alpha k = \alpha /
\surd 
k \forall k \geq 1.

Assumption 5. At least one of the following conditions holds.
1. \phi is bounded on dom(r), i.e., there is C\phi such that | \phi (x)| \leq C\phi \forall x \in dom(r).
2. The function r has the form of r = r1 + r2, where r1 is the indicator function of a

closed convex set X \subseteq \BbbR n, and r2 is convex. In addition, there is Mr \geq 0 such that
\| v\| \leq Mr for all x \in X and all v \in \partial r2(x).

In condition 1 of Assumption 5, the boundedness of \phi can be guaranteed if \phi is continuous
and dom(r) is compact. The second condition trivially holds if r2 \equiv 0, and it also holds if
X = \BbbR n and r2 is a Lipschitz continuous function such as a certain norm.
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Lemma 3.10. Under Assumptions 1 and 3, let \{ \alpha k\} be a positive nonincreasing sequence
and \alpha 1 <

2
\rho . Also, let \beta k \leq \~\beta \forall k \geq 1 for some \~\beta such that 0 \leq \~\beta < 1 - \alpha 1\rho 

2 . Then if the first
condition in Assumption 5 holds, we have for any positive integer K,

(3.22)
\sum K

k=1 \| x(k+1)  - x(k)\| 2 \leq 2\alpha 1C\phi 

\gamma +
\sum K

k=1
\alpha 2
kM

2

\gamma 2 , where \gamma = 1
2

\bigl( 
1 - \alpha 1\rho 

2  - \~\beta 
\bigr) 
.

Proof. When condition 1 of Assumption 5 holds, i.e., | \phi (x)| \leq C\phi \forall x \in dom(r), we have
from the nonincreasing monotonicity of \alpha k that
(3.23)\sum K

k=1 \alpha k

\bigl( 
\phi (x(k)) - \phi (x(k+1))

\bigr) 
= \alpha 1\phi (x

(1)) +
\sum K

k=2(\alpha k  - \alpha k - 1)\phi (x
(k)) - \alpha K\phi (x(K+1))

\leq \alpha 1C\phi  - \sum K
k=2(\alpha k  - \alpha k - 1)C\phi + \alpha KC\phi = 2\alpha 1C\phi .

Hence, let \gamma = 1
2

\bigl( 
1 - \alpha 1\rho 

2  - \~\beta 
\bigr) 
in (3.9) and sum it up over k. We have by \gamma \leq 1 - \gamma  - \alpha k\rho 

2  - 
\beta k+\beta k+1

2 \forall k \geq 1 that

\gamma 
\sum K

k=1 \| x(k+1)  - x(k)\| 2 \leq 2\alpha 1C\phi +
\sum K

k=1
\alpha 2
kM

2

\gamma ,

which apparently implies the desired result.

Lemma 3.11. Suppose that Assumption 3 and condition 2 of Assumption 5 hold. Let \{ x(k)\} 
be the sequence from Algorithm 1 with a stepsize sequence \{ \alpha k\} and inertial parameter \{ \beta k\} 
such that \beta k \leq \~\beta < 1. Then for any positive integer K,

(3.24)
\sum K

k=1 \BbbE \| x(k+1)  - x(k)\| 2 \leq (M2
r +M2)4(1+

\~\beta 2)

(1 - \~\beta 2)2

\sum K
k=1 \alpha 

2
k.

We still need to bound
\sum K

k=k0
\alpha k\rho (1 - \alpha k\rho )\BbbE [\scrE k] in (3.13).

Lemma 3.12. Under Assumptions 1--5, let \rho \in (\rho , 2\rho ] and \alpha k = \alpha \surd 
k

\forall k \geq 1 for some

0 < \alpha \leq 1/\rho . Also, let \beta k = min
\bigl\{ 
\~\beta , \beta 

k1/4

\bigr\} 
\forall k for some \~\beta such that 0 \leq \~\beta < 1  - \alpha \rho 

2 .
Furthermore, assume | F (x)| \leq CF \forall x \in dom(r). Then for any integer K and 1 \leq k0 \leq K, it
holds that\sum K

k=k0
\alpha k\rho (1 - \alpha k\rho )\BbbE [\scrE k] \leq 2\alpha k0\rho \tau CF + \alpha k0\tau 

2\rho 
\bigl( \rho 
2 + \rho 2

\rho  - \rho 

\bigr) \bigl( 
C1 + C2\alpha 

2(1 + lnK)
\bigr) 

(3.25)

+M\tau \rho 
\sqrt{} \sum K

k=k0
\alpha 2
k

\sqrt{} 
C1 + C2\alpha 2(1 + lnK),

where \scrE k is defined in (3.15), and C1 and C2 are given in (3.27) below.

Now we are ready to show the convergence rate result for the case with varying stepsize.

Theorem 3.13 (convergence rate with varying stepsize). Under the same assumptions of
Lemma 3.12, let \{ x(k)\} be the sequence from Algorithm 1. We have
(3.26)

\BbbE 
\bigm\| \bigm\| \nabla \phi 1/\rho (x

(T ))
\bigm\| \bigm\| 2 \leq \rho 

(\rho  - \rho )\alpha (
\surd 
K+1 - 

\surd 
k0)

\Bigl[ 
\BbbE 
\bigl[ 
\phi 1/\rho (x

(k0)) - \phi \ast \bigr] + 4\rho M2\alpha 2(1 + lnK  - ln k0)

+ \rho 
2

\bigl( 
2\~\beta 2 + 2\beta 2

\alpha (\rho  - \rho )

\bigr) \bigl( 
C1 + C2\alpha 

2(1 + lnK)
\bigr) 

+ 2 \alpha \surd 
k0
\rho \tau CF + \alpha \surd 

k0
\tau 2\rho 
\bigl( \rho 
2 + \rho 2

\rho  - \rho 

\bigr) \bigl( 
C1 + C2\alpha 

2(1 + lnK)
\bigr) 

+ \alpha M\tau \rho 
\surd 
1 + lnK  - ln k0

\sqrt{} 
C1 + C2\alpha 2(1 + lnK)

\Bigr] 
,
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where T is randomly selected from \{ k0, . . . ,K\} by (3.14) and

C1 =
4\alpha C\phi 

1 - \alpha \rho 
2
 - \~\beta 

, C2 =
4M2

(1 - \alpha \rho 
2
 - \~\beta )2

, if condition 1 of Assumption 5 holds; or,(3.27a)

C1 = 0, C2 = (M2
r +M2)4(1+

\~\beta 2)

(1 - \~\beta 2)2
, if condition 2 of Assumption 5 holds.(3.27b)

Proof. By the choice of \{ \alpha k\} and \{ \beta k\} , we have\sum K
k=k0

(2 + 2
\alpha k(\rho  - \rho ))\beta 

2
k\BbbE \| x(k)  - x(k - 1)\| 2 \leq (2 \~\beta 2 + 2\beta 2

\alpha (\rho  - \rho ))
\sum K

k=k0
\BbbE \| x(k)  - x(k - 1)\| 2,

which, together with (3.22) and (3.24) and also Lemma A.2 with a = 1, gives

\rho 
2

\sum K
k=k0

(2 + 2
\alpha k(\rho  - \rho ))\beta 

2
k\BbbE \| x(k)  - x(k - 1)\| 2 \leq \rho 

2(2
\~\beta 2 + 2\beta 2

\alpha (\rho  - \rho ))
\bigl( 
C1 + C2

\sum K
k=1 \alpha 

2
k

\bigr) 
\leq \rho 

2(2
\~\beta 2 + 2\beta 2

\alpha (\rho  - \rho ))
\bigl( 
C1 + C2\alpha 

2(1 + lnK)
\bigr) 

(3.28)

with C1 and C2 defined in (3.27). In addition,
\sum K

k=k0
\alpha k \geq \alpha 

\int K+1
k0

1\surd 
x
dx = 2\alpha (

\surd 
K + 1 - 

\surd 
k0)

and
\sum K

k=k0
\alpha 2
k \leq \alpha 2+\alpha 2

\int K
k0

1
xdx = \alpha 2(1+ lnK - ln k0). Hence, substituting (3.25) and (3.28)

into (3.13) gives the desired result.

Remark 3.14. For the no-delay case (i.e., \tau = 0), we can set k0 = 1 in Theorem 3.13; then
the assumption | F (x)| \leq CF \forall x \in dom(r) is not needed anymore. When \tau > 0, the negative
effect by the delay will not vanish as K \rightarrow \infty , similar to what we observe for the result in
Theorem 3.8. Suppose that we have an estimate on \tau and K \gg \tau 4. We can set k0 = \Omega (\tau 4).
Then the terms caused by the delay will near-linearly depend on \tau .

4. Convergence analysis for nonconvex composite problems. In this section, we analyze
Algorithm 1 for problems in the form of (1.1), where F is smooth and r is a possibly nonsmooth
convex function. Instead of the \rho -weak convexity, we assume the \rho -smoothness condition on
F . Here, we abuse the notation of \rho , which is used as the weak-convexity constant in the
previous section. Nevertheless, if F is \rho -smooth, it is also \rho -weakly convex. The stronger
assumption will enable us to obtain better convergence result in terms of the effect caused by
the staleness of the gradient.

Assumption 6 (\rho -smoothness). F (x) is \rho -smooth in dom(r), i.e.,

\| \nabla F (x) - \nabla F (y)\| \leq \rho \| x - y\| \forall x,y \in dom(r).

When F is smooth, it is standard to replace Assumption 3 by the one below.

Assumption 7 (bounded variance). There is \sigma \geq 0 such that \BbbE \xi \| \nabla f(x; \xi )  - \nabla F (x)\| 2 \leq 
\sigma 2 \forall x \in dom r.

In addition, when F is smooth, we only need a boundedness condition on the staleness
but not a static distribution anymore.

Assumption 8 (bounded staleness). There is a finite integer \tau such that \tau k \leq \tau \forall k \geq 1.

We can track the delay and ensure the boundedness of delay by discarding too-outdated
sample gradients.
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Lemma 4.1. Under Assumptions 2, 6, and 7, the iterates \{ x(k)\} from Algorithm 1 satisfy

\BbbE \xi k\| g(k)  - \nabla F (x(k))\| 2 \leq \sigma 2 + \rho 2\| x(k - \tau k)  - x(k)\| 2.

Proof. When F is differentiable, the condition in Assumption 2 becomes \BbbE \xi k [g
(k)] =

\nabla F (x(k - \tau k)). Hence,

\BbbE \xi k\| g(k)  - \nabla F (x(k))\| 2 = \BbbE \xi k\| g(k)  - \nabla F (x(k - \tau k)) +\nabla F (x(k - \tau k)) - \nabla F (x(k))\| 2

= \BbbE \xi k\| g(k)  - \nabla F (x(k - \tau k))\| 2 + \| \nabla F (x(k - \tau k)) - \nabla F (x(k))\| 2

\leq \sigma 2 + \rho 2\| x(k - \tau k)  - x(k)\| 2,

where the second equality follows from \BbbE \xi k

\bigl\langle 
g(k) - \nabla F (x(k - \tau k)),\nabla F (x(k - \tau k)) - \nabla F (x(k))

\bigr\rangle 
= 0,

and the inequality holds by using Assumptions 6 and 7. This completes the proof.

Lemma 4.2. Under Assumptions 2, 6, and 7, let \rho > \rho and \alpha k \in (0, 1/\rho ] \forall k. Then the
iterates \{ x(k)\} from Algorithm 1 with a stepsize sequence \{ \alpha k\} satisfy
(4.1)

\BbbE \xi k\| x(k+1)  - \widetilde x(k)\| 2 \leq \| x(k)  - \widetilde x(k)\| 2  - 
\bigl( 
1
2\alpha k(\rho  - \rho ) - ck

\bigr) 
\| x(k)  - \widetilde x(k)\| 2

+ (2 + 1
ck
)\beta 2

k\| x(k)  - x(k - 1)\| 2 + \alpha 2
k\sigma 

2 + 2
\bigl( 
\alpha 2
k +

\alpha k
\rho  - \rho 

\bigr) 
\rho 2\| x(k - \tau k)  - x(k)\| 2,

where ck is any positive number, and \widetilde x(k) is defined in (3.1a).

Using the previous two lemmas, we show a convergence result below for generic parameters.

Theorem 4.3. Under Assumptions 2, 6, and 7, let \rho > \rho and \alpha k \in (0, 1/\rho ] \forall k \geq 1. Given
a positive integer K, let \{ x(k)\} Kk=1 be the sequence generated from Algorithm 1 with a stepsize
sequence \{ \alpha k\} Kk=1 and inertial parameter \{ \beta k\} . Then
(4.2)

\BbbE \| \nabla \phi 1/\rho (x
(T ))\| 2 \leq 8\rho 

(\rho  - \rho )
\sum K

k=1 \alpha k

\Bigl[ 
\rho 
2

\sum K
k=1

\bigl( 
2 + 4

\alpha k(\rho  - \rho )

\bigr) 
\beta 2
k\BbbE \| x(k)  - x(k - 1)\| 2

+ \phi 1/\rho (x
(1)) - \phi \ast + \sigma 2\rho 

2

\sum K
k=1 \alpha 

2
k + \rho \rho 2

\sum K
k=1

\bigl( 
\alpha 2
k +

\alpha k
\rho  - \rho 

\bigr) 
\BbbE \| x(k - \tau k)  - x(k)\| 2

\Bigr] 
,

where T is randomly selected from \{ 1, . . . ,K\} by (3.14).

Proof. By the definition of \phi \lambda in (2.3) and Lemma 4.2, we have

\BbbE \xi k

\bigl[ 
\phi 1/\rho (x

(k+1))
\bigr] 

\leq \BbbE \xi k

\bigl[ 
\phi (\widetilde x(k)) + \rho 

2\| x(k+1)  - \widetilde x(k)\| 2
\bigr] 

\leq \phi (\widetilde x(k)) + \rho 
2

\Bigl[ 
\| x(k)  - \widetilde x(k)\| 2  - (12\alpha k(\rho  - \rho ) - ck)\| x(k)  - \widetilde x(k)\| 2

+
\bigl( 
2 + 1

ck

\bigr) 
\beta 2
k\| x(k)  - x(k - 1)\| 2 + \alpha 2

k\sigma 
2 + 2

\bigl( 
\alpha 2
k +

\alpha k
\rho  - \rho 

\bigr) 
\rho 2\| x(k - \tau k)  - x(k)\| 2

\Bigr] 
= \phi 1/\rho (x

(k)) - \rho 
2(

1
2\alpha k(\rho  - \rho ) - ck)\| x(k)  - \widetilde x(k)\| 2 + \rho 

2

\bigl( 
2 + 1

ck

\bigr) 
\beta 2
k\| x(k)  - x(k - 1)\| 2(4.3)

+
\rho \alpha 2

k\sigma 
2

2 + 2
\bigl( 
\alpha 2
k +

\alpha k
\rho  - \rho 

\bigr) \rho \rho 2
2 \| x(k - \tau k)  - x(k)\| 2.
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Take full expectation on both sides of (4.3) and sum up it over k = 1, . . . ,K. Then we have

\BbbE 
\bigl[ 
\phi 1/\rho (x

(K+1))
\bigr] (4.4)

\leq \BbbE 
\bigl[ 
\phi 1/\rho (x

(1))
\bigr] 
 - \rho 

2

\sum K
k=1

\bigl( 
1
2\alpha k(\rho  - \rho ) - ck

\bigr) 
\BbbE \| x(k)  - \widetilde x(k)\| 2 + \rho 

2

\sum K
k=1

\bigl( 
2 + 1

ck

\bigr) 
\beta 2
k\BbbE \| x(k)  - x(k - 1)\| 2

+ \sigma 2\rho 
2

\sum K
k=1 \alpha 

2
k + \rho \rho 2

\sum K
k=1

\bigl( 
\alpha 2
k + \alpha k

\rho  - \rho 

\bigr) 
\BbbE \| x(k - \tau k)  - x(k)\| 2.

Choose ck = 1
4\alpha k(\rho  - \rho ) \forall k and replace \| x(k)  - \widetilde x(k)\| 2 by 1

\rho 2
\| \nabla \phi 1/\rho (x

(k))\| 2 from Lemma 2.4.

We have from (4.4) that

\BbbE 
\bigl[ 
\phi 1/\rho (x

(K+1))
\bigr] (4.5)

\leq \BbbE 
\bigl[ 
\phi 1/\rho (x

(1))
\bigr] 
 - 1

8\rho 

\sum K
k=1 \alpha k(\rho  - \rho )\BbbE \| \nabla \phi 1/\rho (x

(k))\| 2 + \rho 
2

\sum K
k=1

\bigl( 
2 + 4

\alpha k(\rho  - \rho )

\bigr) 
\beta 2
k\BbbE \| x(k)  - x(k - 1)\| 2

+ \sigma 2\rho 
2

\sum K
k=1 \alpha 

2
k + \rho \rho 2

\sum K
k=1

\bigl( 
\alpha 2
k + \alpha k

\rho  - \rho 

\bigr) 
\BbbE \| x(k - \tau k)  - x(k)\| 2.

Rearrange terms in (4.5) and notice \phi 1/\rho (x
(K+1)) \geq \phi \ast ; we obtain the desired result by the

definition of T .

To show the convergence rate, we still need the following result to bound
\sum 

k\geq 1 \BbbE \| x(k+1) - 
x(k)\| 2.

Lemma 4.4. Let \{ x(k)\} be generated from Algorithm 1. Under Assumptions 6 and 7, it
holds for any \gamma > 0 that
(4.6)

(1 - \gamma  - \alpha k\rho 
2  - \beta k

2 )\BbbE \xi k\| x(k+1)  - x(k)\| 2 \leq \alpha k\BbbE \xi k

\bigl( 
\phi (x(k)) - \phi (x(k+1))

\bigr) 
+ \beta k

2 \| x(k)  - x(k - 1)\| 2

+
\alpha 2
k

2\gamma 

\bigl( 
\rho 2\| x(k)  - x(k - \tau k)\| 2 + \sigma 2

\bigr) 
.

Proof. By the \rho -smoothness of F and \alpha k > 0, it holds that

(4.7) \alpha k

\bigl( 
F (x(k+1)) - F (x(k))

\bigr) 
\leq \alpha k

\bigl( 
\langle x(k+1)  - x(k),\nabla F (x(k))\rangle + \rho 

2\| x(k+1)  - x(k)\| 2
\bigr) 
.

Also notice that (3.10) still holds. Hence, we obtain, by adding (3.10) and (4.7) and rearrang-
ing terms, that
(4.8)

(1 - \alpha k\rho 
2 )\| x(k+1)  - x(k)\| 2 \leq \alpha k

\bigl( 
\phi (x(k)) - \phi (x(k+1))

\bigr) 
+ \alpha k

\bigl\langle 
x(k+1)  - x(k),\nabla F (x(k)) - g(k)

\bigr\rangle 
+ \beta k

\bigl\langle 
x(k+1)  - x(k),x(k)  - x(k - 1)

\bigr\rangle 
.

By the Young's inequality, we have for any \gamma > 0,

(4.9) \alpha k

\bigl\langle 
x(k+1)  - x(k),\nabla F (x(k)) - g(k)

\bigr\rangle 
\leq \gamma \| x(k+1)  - x(k)\| 2 + \alpha 2

k
4\gamma \| \nabla F (x(k)) - g(k)\| 2

and

(4.10) \beta k
\bigl\langle 
x(k+1)  - x(k),x(k)  - x(k - 1)

\bigr\rangle 
\leq \beta k

2

\bigl( 
\| x(k+1)  - x(k)\| 2 + \| x(k)  - x(k - 1)\| 2

\bigr) 
.
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Plugging (4.9) and (4.10) into (4.8) gives
(4.11)

(1 - \alpha k\rho 
2 )\| x(k+1)  - x(k)\| 2 \leq \alpha k

\bigl( 
\phi (x(k)) - \phi (x(k+1))

\bigr) 
+ \gamma \| x(k+1)  - x(k)\| 2

+
\alpha 2
k

4\gamma \| \nabla F (x(k)) - g(k)\| 2 + \beta k
2

\bigl( 
\| x(k+1)  - x(k)\| 2 + \| x(k)  - x(k - 1)\| 2

\bigr) 
.

Now notice \BbbE \xi k\| \nabla F (x(k)) - g(k)\| 2 \leq 2\| \nabla F (x(k)) - \nabla F (x(k - \tau k))\| 2+2\BbbE \xi k\| \nabla F (x(k - \tau k)) - g(k)\| 2
and use Assumptions 6 and 7. We obtain the desired result by taking a conditional expectation
about \xi k over both sides of (4.11) and rearranging terms.

Now we are ready to show the convergence rate result.

Theorem 4.5 (convergence rate with fixed stepsize). Under Assumptions 2 and 6--8, let
\rho > \rho and K be the maximum number of iterations. Choose \alpha k = \alpha \surd 

K
and \beta k = \beta 

K1/4 for

some \alpha > 0 and \beta \geq 0 such that \~\gamma := 1
2  - 

\alpha \rho 

2
\surd 
K
 - \tau \alpha 2\rho 2

K  - \beta 
K1/4 > 0. Let \{ x(k)\} be the sequence

from Algorithm 1. Then
(4.12)

\BbbE \| \nabla \phi 1/\rho (x
(T ))\| 2 \leq 8\rho 

(\rho  - \rho )\alpha 
\surd 
K

\Biggl[ 
\phi 1/\rho (x

(1)) - \phi \ast + \sigma 2\rho \alpha 2

2

+ 1
\~\gamma 

\Bigl( 
\rho 
\bigl( 
1 + 2

\surd 
K

\alpha (\rho  - \rho )

\bigr) \beta 2
\surd 
K

+ \tau 2\rho \rho 2
\bigl( 
\alpha 2

K + \alpha 
(\rho  - \rho )

\surd 
K

\bigr) \Bigr) \bigl( 
\alpha \surd 
K
\BbbE (\phi (x(1)) - \phi \ast ) + \alpha 2\sigma 2

\bigr) \Biggr] 
,

where T is randomly selected from \{ 1, . . . ,K\} by (3.14) with k0 = 1.

Proof. With \alpha k = \alpha \surd 
K

and \beta k = \beta 
K1/4 , we take full expectation over (4.6) with \gamma = 1

2 and

sum it up over k = 1 through K to have
(4.13)

(12  - \alpha \rho 

2
\surd 
K

 - \beta 
2K1/4 )

\sum K
k=1 \BbbE \| x(k+1)  - x(k)\| 2 \leq \alpha \surd 

K
\BbbE 
\bigl( 
\phi (x(1)) - \phi (x(K+1))

\bigr) 
+ \beta 

2K1/4

\sum K
k=1 \BbbE \| x(k)  - x(k - 1)\| 2 + \alpha 2

K

\sum K
k=1

\bigl( 
\rho 2\BbbE \| x(k)  - x(k - \tau k)\| 2 + \sigma 2

\bigr) 
.

Notice that x(0) = x(1) and by Assumption 7, it holds that

(4.14) \| x(k)  - x(k - \tau k)\| 2 \leq \tau 
\sum \tau 

j=1 \| x(k+1 - j)  - x(k - j)\| 2.

Hence, we have from (4.13) by rearranging terms and using \phi (x) \geq \phi \ast \forall x \in dom(r) that

\bigl( 1
2
 - \alpha \rho 

2
\surd 
K

 - \tau 2\alpha 2\rho 2

K
 - \beta 

K1/4

\bigr) K\sum 
k=1

\BbbE \| x(k+1)  - x(k)\| 2 \leq \alpha \surd 
K

\BbbE 
\bigl( 
\phi (x(1)) - \phi \ast \bigr) + \alpha 2\sigma 2.(4.15)

Therefore,

\rho 

2

K\sum 
k=1

\bigl( 
2 +

4

\alpha k(\rho  - \rho )

\bigr) 
\beta 2
k\BbbE \| x(k)  - x(k - 1)\| 2 + \rho \rho 2

K\sum 
k=1

\bigl( 
\alpha 2
k +

\alpha k

\rho  - \rho 

\bigr) 
\BbbE \| x(k - \tau k)  - x(k)\| 2

(4.16)
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\leq 
\Bigl( \rho 
2

\bigl( 
2 +

4
\surd 
K

\alpha (\rho  - \rho )

\bigr) \beta 2

\surd 
K

+ \tau 2\rho \rho 2
\bigl( \alpha 2

K
+

\alpha 

(\rho  - \rho )
\surd 
K

\bigr) \Bigr) K\sum 
k=1

\BbbE \| x(k)  - x(k - 1)\| 2

\leq 1

\~\gamma 

\Biggl( 
\rho 

2

\bigl( 
2 +

4
\surd 
K

\alpha (\rho  - \rho )

\bigr) \beta 2

\surd 
K

+ \tau 2\rho \rho 2
\bigl( \alpha 2

K
+

\alpha 

(\rho  - \rho )
\surd 
K

\bigr) \Biggr) \bigl( \alpha \surd 
K

\BbbE 
\bigl( 
\phi (x(1)) - \phi \ast \bigr) + \alpha 2\sigma 2

\bigr) 
,

where the first inequality follows from (4.14), and the second inequality is from (4.15) and
the definition of \~\gamma . Now plug (4.16) and the choice of \{ \alpha k\} into (4.2) to obtain the desired
result.

Remark 4.6. We make a few remarks here about Theorem 4.5. First, in the proof, we
take \gamma = 1

2 for simplicity while using (4.6). The analysis goes through for any \gamma > 0 such that

1 - \gamma  - \alpha \rho 

2
\surd 
K
 - \tau 2\alpha 2\rho 2

2\gamma K  - \beta 
K1/4 > 0. Second, we see from (4.12) that a positive \tau will slow down

the convergence but its effect will be reduced in an order of K - 1
4 . Hence, if K is big enough

such that K1/4 \gg \tau , then the effect caused by the staleness is negligible.

The O( 1\surd 
K
) convergence above is established by using a fixed stepsize sequence. We can

show a similar result for the choice of \alpha k = \Theta ( 1\surd 
k
) by assuming condition 1 of Assumption 5.

The proof is given in Appendix B.

Theorem 4.7 (convergence rate with varying stepsize). Suppose Assumptions 2 and 6--8 and
also condition 1 of Assumption 5 hold. Let \rho > \rho , \alpha k = \alpha \surd 

k+a - 1
, and \beta k = min

\bigl\{ 
\~\beta , \beta 

(k+a - 1)1/4

\bigr\} 
\forall k \geq 1, for some \alpha > 0, \beta \geq 0, \~\beta \geq 0, and a \geq 1 such that

(4.17) \~\gamma := 1
2

\bigl( 
1 - \alpha \rho \surd 

a
 - \~\beta 2  - 2\tau 2\rho 2\alpha 2

a

\bigr) 
> 0.

Let \{ x(k)\} be the sequence from Algorithm 1. Then,
(4.18)

\BbbE \| \nabla \phi 1/\rho (x
(T ))\| 2 \leq 4\rho 

(\rho  - \rho )\alpha (
\surd 
K+a - 

\surd 
a)

\Biggl[ 
\phi 1/\rho (x

(1)) - \phi \ast + \sigma 2\rho \alpha 2

2 (1 + ln a+K - 1
a )

+
\Bigl( 
\rho 
\bigl( 
\~\beta 2 + 2\beta 2

\alpha (\rho  - \rho )

\bigr) 
+ \tau 2\rho \rho 2

\bigl( 
\alpha 2

a + \alpha \surd 
a(\rho  - \rho )

\bigr) \Bigr) 
2
\~\gamma 

\bigl( 
\alpha 1C\phi + \sigma 2\alpha 2(1 + ln a+K - 1

a )
\bigr) \Biggr] 

,

where T is randomly selected from \{ 1, . . . ,K\} by (3.14) with k0 = 1.

Remark 4.8. When there is no delay, i.e., \tau = 0, we can choose a = 1 and obtain a
convergence rate of \~\Theta ( 1\surd 

K
). When there is delay, i.e., \tau \geq 1, (4.18) with a = \Theta (\tau 4), which

can ensure (4.17), gives a rate of \widetilde \Theta ( 1\surd 
K+\tau 4 - 

\surd 
\tau 4
) = \widetilde \Theta ( 1\surd 

K
(
\sqrt{} 
1 + \tau 4

K +
\sqrt{} 

\tau 4

K )). In this case, the

delay will have a negligible effect on the convergence speed if \tau = o(K
1
4 ).

5. Convergence analysis for smooth nonconvex problems. In this section, we consider
the case where r = 0, i.e., a nonregularized smooth problem. For this special case, we are
able to show a stronger result under the same assumptions as we used in section 4, in the
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sense that the delay has a weaker effect on the convergence speed. However, the analysis is
significantly different from those in the previous two sections. Throughout this section, we let

(5.1) \beta k = \alpha k
\alpha k - 1

\beta \forall k \geq 1 and for some \beta \in (0, 1).

Then the update in (1.2) reduces to (1.5) with m-vectors defined in (1.4). We declare the
following notation, as it appears extensively in this section:

(5.2) u(k) = \nabla F (x(k - \tau k)) and uk = \BbbE \| u(k)\| 2 \forall k \geq 1.

With the setting in (5.1), we define the following quantities that are critical for bounding
the staleness:

(5.3) \theta k,j =
\sum \mathrm{m}\mathrm{i}\mathrm{n}\{ \tau k - 1,k - j - 1\} 

l=0 \alpha k - l - 1\beta 
k - j - l - 1 and \pi k,j(t) =

\sum \mathrm{m}\mathrm{i}\mathrm{n}\{ \tau k - 1,k - j - 1\} 
l=0 tk - j - l - 1.

Lemma 5.1. Letting t \in (0, 1), we have the following results:
(5.4)

\pi k,j(t) =

\Biggl\{ 
1 - tk - j

1 - t if j \geq k  - \tau k + 1,

1 - t\tau k
1 - t tk - \tau k - j if j \leq k  - \tau k;

\sum k - 1
j=1 \pi k,j(t) \leq \tau 

1 - t ;
\sum k - 1

j=1 \pi 
2
k,j(t) \leq \tau 

(1 - t)2
.

Lemma 5.2. Let \{ x(k)\} k\geq 1 and \{ m(k)\} k\geq 1 be generated from (1.5) and (1.4). Under As-
sumptions 2 and 7, it holds for k \geq 1 that

(5.5) \BbbE \| m(k)\| 2 \leq (1 - \beta )
\sum k

j=1 \beta 
k - juj + (1 - \beta )2

\sum k
j=1 \beta 

2(k - j)uj +
(1 - \beta )2

1 - \beta 2 \sigma 2,

(5.6) \BbbE \| x(k - \tau k)  - x(k)\| 2 \leq \sum k - 1
l=1 \theta k,l

\sum k - 1
j=1 \theta k,juj +

\sum k - 1
j=1 \theta 

2
k,juj + \sigma 2

\sum k - 1
j=1 \theta 

2
k,j .

In the remaining analysis, we follow the analytical framework of [67]. We define an auxil-
iary sequence z(k) as follows:

(5.7) z(k) = x(k) + \beta 
1 - \beta (x

(k)  - x(k - 1)) = 1
1 - \beta x

(k)  - \beta 
1 - \beta x

(k - 1) \forall k \geq 1.

Recall x(0) = x(1), so clearly, z(1) = x(1).

Lemma 5.3. Let z(k) be defined as in (5.7) and \alpha 0 = \alpha 1. We have for k \geq 1,

(5.8) z(k+1)  - z(k) = \beta 
1 - \beta (1 - \alpha k/\alpha k - 1)(x

(k - 1)  - x(k)) - \alpha k
1 - \beta g

(k)

and

(5.9) \| \nabla F (z(k)) - \nabla F (x(k))\| \leq \rho \beta 
1 - \beta \| x(k - 1)  - x(k)\| .

Now we are ready to show the main result. We first show the convergence by imposing
general conditions on \{ \alpha k\} and then specify the choice of the parameters that satisfies the
imposed conditions.
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Theorem 5.4. Given a maximum number K of iterations, let \{ x(k)\} Kk=1 be generated from
Algorithm 1 with a nonincreasing positive sequence \{ \alpha k\} Kk=1. Let \=x

(K) be drawn from \{ x(k)\} Kk=1

with probability

(5.10) Prob(\=x(K) = x(k)) = \alpha k\sum K
j=1 \alpha j

\forall k = 1, . . . ,K.

Under Assumptions 2 and 6--8, if \forall k \geq 2,

(5.11) (1 - \alpha k/\alpha k - 1)
2 \leq \alpha k

2(1 - \beta ) ,

and \forall j \geq 1,

(5.12)
3\rho \alpha j

1 - \beta + \rho 2
\biggl[ 
\tau (\tau  - 1)\alpha 1\alpha j

(1 - \beta )2
+

(\tau  - 1)\alpha 2
j

(1 - \beta )2
+

\tau \alpha 2
j

(1 - \beta )3
+

\alpha 2
j

(1 - \beta )2(1 - \beta 2)

\biggr] 
+ 2(1+5\rho )\beta 2

(1 - \beta )2(1 - \beta 2)
\alpha j \leq 1,

then it holds that

(5.13)
\BbbE \| \nabla F (\=x(K))\| 2 \leq 4\sigma 2

(1 - \beta )
\sum K

k=1 \alpha k

\Bigl[ 
\rho 2\tau 

2(1 - \beta )

\sum K
k=1 \alpha k\alpha 

2
\mathrm{m}\mathrm{a}\mathrm{x}\{ k - \tau k,1\} +

(1+5\rho )\beta 2

2(1 - \beta 2)

\sum K
k=2 \alpha 

2
k - 1

+ \rho 
\sum K

k=1 \alpha 
2
k

\Bigr] 
+

4(1 - \beta )[F (\bfx (1)) - \mathrm{i}\mathrm{n}\mathrm{f}\bfx F (\bfx )]\sum K
k=1 \alpha k

.

Proof. By the \rho -smoothness of F, it follows from (2.5) that

0 \leq F (z(k)) - F (z(k+1)) +\nabla F (z(k))\top (z(k+1)  - z(k)) + \rho 
2\| z(k+1)  - z(k)\| 2

= F (z(k)) - F (z(k+1)) +\nabla F (x(k))\top (z(k+1)  - z(k))

+ (\nabla F (z(k)) - \nabla F (x(k)))\top (z(k+1)  - z(k)) + \rho 
2\| z(k+1)  - z(k)\| 2.(5.14)

Taking the conditional expectation and using (5.8) and Assumption 2, we have from (5.14)
that

0 \leq \BbbE k[F (z(k)) - F (z(k+1))] +\nabla F (x(k))\top 
\bigl( \beta 
1 - \beta (1 - \alpha k/\alpha k - 1)(x

(k - 1)  - x(k)) - \alpha k
1 - \beta u

(k)
\bigr) 

+ (\nabla F (z(k)) - \nabla F (x(k)))\top 
\bigl( \beta 
1 - \beta (1 - \alpha k/\alpha k - 1)(x

(k - 1)  - x(k)) - \alpha k
1 - \beta u

(k)
\bigr) 

+ \rho 
2\BbbE k

\bigm\| \bigm\| \beta 
1 - \beta (1 - \alpha k/\alpha k - 1)(x

(k - 1)  - x(k)) - \alpha k
1 - \beta g

(k)
\bigm\| \bigm\| 2.(5.15)

We bound the right-hand side of (5.15) as follows:
\bullet in the first line of (5.15), applying the Cauchy--Schwarz inequality gives

\nabla F (x(k))\top 
\beta 

1 - \beta 
(1 - \alpha k/\alpha k - 1)(x

(k - 1)  - x(k))

\leq 1

2
(1 - \alpha k

\alpha k - 1
)2\| \nabla F (x(k))\| 2 + \beta 2

2(1 - \beta )2
\| x(k - 1)  - x(k)\| 2;

\bullet in the second line of (5.15), it follows from (5.9) and 0 \leq 1 - \alpha k
\alpha k - 1

\leq 1 that

(\nabla F (z(k)) - \nabla F (x(k)))\top 
\beta 

1 - \beta 
(1 - \alpha k/\alpha k - 1)(x

(k - 1)  - x(k)) \leq \rho \beta 2

(1 - \beta )2
\| x(k - 1)  - x(k)\| 2
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and in addition, by the Cauchy--Schwarz inequality,

(\nabla F (z(k)) - \nabla F (x(k)))\top ( - \alpha k

1 - \beta 
u(k)) \leq \rho \cdot \beta 

1 - \beta 
\| x(k - 1)  - x(k)\| \cdot \alpha k

1 - \beta 
\| u(k)\| 

\leq \rho \beta 2

2(1 - \beta )2
\| x(k - 1)  - x(k)\| 2 + \rho \alpha 2

k

2(1 - \beta )2
\| u(k)\| 2;

\bullet in the last line of (5.15), using the Young's inequality gives

\rho 

2
\BbbE k\| 

\beta 

1 - \beta 
(1 - \alpha k/\alpha k - 1)(x

(k - 1)  - x(k)) - \alpha k

1 - \beta 
g(k)\| 2

\leq \rho \beta 2

(1 - \beta )2
\| x(k - 1)  - x(k)\| 2 + \rho \alpha 2

k

(1 - \beta )2
\BbbE k\| g(k)\| 2;

\bullet furthermore, by Assumption 7, we have

\BbbE k\| g(k)\| 2 = \BbbE k\| \nabla f(x(k - \tau k); \xi k) - u(k)\| 2 + \| u(k)\| 2 \leq \sigma 2 + \| u(k)\| 2.

Substitute the above four items into (5.15), combine like terms, and take total expectation.
We have

0 \leq \BbbE [F (z(k)) - F (z(k+1))] + 1
2(1 - 

\alpha k
\alpha k - 1

)2\BbbE \| \nabla F (x(k))\| 2  - \alpha k
1 - \beta \BbbE [\nabla F (x(k))\top u(k)]

+ (1+5\rho )\beta 2

2(1 - \beta )2
\BbbE \| x(k - 1)  - x(k)\| 2 + \rho \alpha 2

k\sigma 
2

(1 - \beta )2
+

3\rho \alpha 2
k

2(1 - \beta )2
uk

= \BbbE [F (z(k)) - F (z(k+1))] +
1

2
(1 - \alpha k

\alpha k - 1
)2\BbbE \| \nabla F (x(k))\| 2(5.16)

 - \alpha k
2(1 - \beta )

\bigl[ 
\BbbE \| \nabla F (x(k))\| 2 + uk  - \BbbE \| \nabla F (x(k - \tau k)) - \nabla F (x(k))\| 2

\bigr] 
+ (1+5\rho )\beta 2

2(1 - \beta )2
\BbbE \| x(k - 1)  - x(k)\| 2 + \rho \alpha 2

k\sigma 
2

(1 - \beta )2
+

3\rho \alpha 2
k

2(1 - \beta )2
uk,

where the equality is due to a\top b = 1
2 [\| a\| 2 + \| b\| 2  - \| a - b\| 2] for any two vectors a and b.

Using (1.5) and the smoothness of F and then substituting (5.5) and (5.6) to (5.16), we
have

0 \leq \BbbE [F (z(k)) - F (z(k+1))] + 1
2

\Bigl[ 
(1 - \alpha k

\alpha k - 1
)2  - \alpha k

1 - \beta 

\Bigr] 
\BbbE \| \nabla F (x(k))\| 2

(5.17)

+
\alpha k\rho 

2

2(1 - \beta )

\Bigl[ k - 1\sum 
l=1

\theta k,l

k - 1\sum 
j=1

\theta k,juj +
k - 1\sum 
j=1

\theta 2k,juj + \sigma 2
k - 1\sum 
j=1

\theta 2k,j

\Bigr] 
+

1

2

\bigl( 3\rho \alpha 2
k

(1 - \beta )2
 - \alpha k

1 - \beta 

\bigr) 
uk

+
(1 + 5\rho )\beta 2\alpha 2

k - 1

2(1 - \beta )2

\Bigl[ k - 1\sum 
j=1

\bigl( \beta k - j - 1

1 - \beta 
+ \beta 2(k - j - 1)

\bigr) 
uj +

\sigma 2

1 - \beta 2

\Bigr] 
+

\rho \alpha 2
k\sigma 

2

(1 - \beta )2
.
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Summing the above inequality over k = 1, . . . ,K and utilizing (5.11) lead to
(5.18)

0 \leq F (x(1)) - \BbbE [F (z(K+1))] - 1
4(1 - \beta )

\sum K
k=1 \alpha k\BbbE \| \nabla F (x(k))\| 2 + 1

2

\sum K
k=1

\bigl( 3\rho \alpha 2
k

(1 - \beta )2
 - \alpha k

1 - \beta 

\bigr) 
uk

+ \rho 2

2(1 - \beta )

\sum K
k=1 \alpha k

\Bigl[ \sum k - 1
l=1 \theta k,l

\sum k - 1
j=1 \theta k,juj +

\sum k - 1
j=1 \theta 

2
k,juj

\Bigr] 
+ (1+5\rho )\beta 2

2(1 - \beta )2
\sum K

k=1 \alpha 
2
k - 1

\sum k - 1
j=1

\bigl( \beta k - j - 1

1 - \beta + \beta 2(k - j - 1)
\bigr) 
uj

+
\Bigl[ 

\rho 2

2(1 - \beta )

\sum K
k=1 \alpha k

\sum k - 1
j=1 \theta 

2
k,j +

(1+5\rho )\beta 2

2(1 - \beta )2(1 - \beta 2)

\sum K
k=1 \alpha 

2
k - 1 +

\rho 
(1 - \beta )2

\sum K
k=1 \alpha 

2
k

\Bigr] 
\sigma 2.

Since \{ \alpha k\} is nonincreasing, it holds from (5.3) that

(5.19) \theta k,j \leq \alpha \mathrm{m}\mathrm{a}\mathrm{x}\{ k - \tau k,j\} \pi k,j(\beta ),

which together with the two inequalities in (5.4) gives

(5.20)
\sum k - 1

j=1 \theta k,j \leq \alpha \mathrm{m}\mathrm{a}\mathrm{x}\{ k - \tau k,1\} 
\tau 

1 - \beta , and
\sum k - 1

j=1 \theta 
2
k,j \leq \alpha 2

\mathrm{m}\mathrm{a}\mathrm{x}\{ k - \tau k,1\} 
\tau 

(1 - \beta )2
.

Plugging the latter inequality of (5.20) into the fourth line of (5.18), and also interchanging
the summations in the second and third lines of (5.18), yields

0 \leq F (x(1)) - inf\bfx F (x) - 1
4(1 - \beta )

\sum K
k=1 \alpha k\BbbE \| \nabla F (x(k))\| 2 + 1

2

\sum K
k=1

\bigl( 3\rho \alpha 2
k

(1 - \beta )2
 - \alpha k

1 - \beta 

\bigr) 
uk

+ \rho 2

2(1 - \beta )

\sum K - 1
j=1 uj

\sum K
k=j+1 \alpha k\theta k,j

\bigl( 
\theta k,j +

\sum k - 1
l=1 \theta k,l

\bigr) 
+ (1+5\rho )\beta 2

(1 - \beta )3(1 - \beta 2)

\sum K - 1
j=1 uj\alpha 

2
j

+
\Bigl[ 

\rho 2\tau 
2(1 - \beta )

\sum K
k=1 \alpha k\alpha 

2
\mathrm{m}\mathrm{a}\mathrm{x}\{ k - \tau k,1\} +

(1+5\rho )\beta 2

2(1 - \beta 2)

\sum K
k=1 \alpha 

2
k - 1 + \rho 

\sum K
k=1 \alpha 

2
k

\Bigr] 
\sigma 2

(1 - \beta )2
,(5.21)

where the last summation in the second line is simplified by utilizing the following summation
bound:

K\sum 
k=1

\alpha 2
k - 1

k - 1\sum 
j=1

tk - j - 1uj =
K - 1\sum 
j=1

uj

K\sum 
k=j+1

\alpha 2
k - 1t

k - j - 1 \leq 
K - 1\sum 
j=1

uj\alpha 
2
j/(1 - t).

Furthermore, \sum K
k=j+1 \alpha k\theta k,j

\bigl( 
\theta k,j +

\sum k - 1
l=1 \theta k,l

\bigr) 
\leq \alpha j

\sum K
k=j+1 \alpha \mathrm{m}\mathrm{a}\mathrm{x}\{ k - \tau k,j\} \pi k,j(\beta )

\bigl( 
\alpha \mathrm{m}\mathrm{a}\mathrm{x}\{ k - \tau k,j\} \pi k,j(\beta ) +

\alpha \mathrm{m}\mathrm{a}\mathrm{x}\{ k - \tau k,1\} \tau 

1 - \beta 

\bigr) 
\leq \alpha j

\sum 
k : j+1\leq k\leq K, k\leq j+\tau  - 1 \alpha j

1
1 - \beta 

\bigl( 
\alpha j

1
1 - \beta + \alpha 1\tau 

1 - \beta 

\bigr) 
+ \alpha j

\sum 
k : j+1\leq k\leq K, k\geq j+\tau \alpha j

\beta k - \tau  - j

1 - \beta 

\bigl( 
\alpha j

\beta k - \tau  - j

1 - \beta +
\alpha j\tau 
1 - \beta 

\bigr) 
\leq \tau (\tau  - 1)\alpha 1\alpha 2

j

(1 - \beta )2
+

(\tau  - 1)\alpha 3
j

(1 - \beta )2
+

\tau \alpha 3
j

(1 - \beta )3
+

\alpha 3
j

(1 - \beta )2(1 - \beta 2)
.(5.22)

In the above, the first inequality follows from \alpha k \leq \alpha j \forall k \geq j, (5.19) and (5.20); the second
inequality breaks the summation on k into two parts: in the first part k \leq j + \tau  - 1, we used
\pi k,j(\beta ) \leq 1

1 - \beta by (5.3) and also \alpha \mathrm{m}\mathrm{a}\mathrm{x}\{ k - \tau k,j\} \leq \alpha j and \alpha \mathrm{m}\mathrm{a}\mathrm{x}\{ k - \tau k,1\} \leq \alpha 1, and in the second

part k \geq j+\tau , since k \geq j+\tau k, we have \pi k,j(\beta ) \leq \beta k - \tau  - j

1 - \beta from the second case in the equality
of (5.4) and also, \alpha \mathrm{m}\mathrm{a}\mathrm{x}\{ k - \tau k,j\} = \alpha \mathrm{m}\mathrm{a}\mathrm{x}\{ k - \tau k,1\} \leq \alpha j .
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Now substitute (5.22) into (5.21), use the assumption in (5.12) to drop the nonpositive
terms about uj , also use the definition of \=x(K) in (5.10), and then rearrange terms to obtain
the desired result in (5.13).

Below we specify the setting of \{ \alpha k\} and show the sublinear convergence.

Corollary 5.5. Given a maximum number K of iterations, let \alpha k = \alpha /
\surd 
K \forall k = 1, . . . ,K,

and for some \alpha > 0. If \alpha > 0 and \beta > 0 are chosen such that

(5.23) \tau 2 + \tau 
1 - \beta + \beta 2

1 - \beta 2 \leq (1 - \beta )2K
2\alpha 2\rho 2

and 3\rho + 2(1+5\rho )\beta 2

(1 - \beta )(1 - \beta 2)
\leq (1 - \beta )

\surd 
K

2\alpha ,

then under Assumptions 2 and 6--8, the iterate \=x(K) given in (5.10) satisfies

(5.24) \BbbE \| \nabla F (\=x(K))\| 2 \leq 
\Bigl( 

\rho 2\alpha \tau 

2(1 - \beta )
\surd 
K

+ (1+5\rho )\beta 2

2(1 - \beta 2)
+ \rho 
\Bigr) 

4\alpha \sigma 2

(1 - \beta )
\surd 
K

+
4(1 - \beta )[F (\bfx (1)) - \mathrm{i}\mathrm{n}\mathrm{f}\bfx F (\bfx )]

\alpha 
\surd 
K

.

Proof. When \alpha k \equiv \alpha /
\surd 
K, (5.11) is trivially true, and in addition, when (5.23) hold, it is

not hard to verify
(5.25)

\rho 2
\biggl[ 
\tau (\tau  - 1)\alpha 1\alpha j

(1 - \beta )2
+

(\tau  - 1)\alpha 2
j

(1 - \beta )2
+

\tau \alpha 2
j

(1 - \beta )3
+

\alpha 2
j

(1 - \beta )2(1 - \beta 2)

\biggr] 
\leq 1

2 , and
\Bigl[ 

3\rho 
1 - \beta + 2(1+5\rho )\beta 2

(1 - \beta )2(1 - \beta 2)

\Bigr] 
\alpha j \leq 1

2 ,

which implies (5.12). Finally, (5.13) simplifies to (5.24).

Remark 5.6. From (5.24), we see that the delay can reduce the convergence speed of
Algorithm 1 by roughly O( \tau \surd 

K
). When \tau = o(

\surd 
K), the slow-down effect is negligible.

Corollary 5.7. Given a maximum number K of iterations, let \alpha k = \alpha /
\surd 
a+ k  - 1 \forall k =

1, . . . ,K and for some a \geq 2\tau such that a
\surd 
a+ 1 \geq 1 - \beta 

2\alpha . If

(5.26) \tau 2 + \tau 
1 - \beta + \beta 2

1 - \beta 2 \leq (1 - \beta )2a
2\alpha 2\rho 2

and 3\rho + 2(1+5\rho )\beta 2

(1 - \beta )(1 - \beta 2)
\leq (1 - \beta )

\surd 
a

2\alpha ,

then under Assumptions 2 and 6--8, the output of Algorithm 1 satisfies
(5.27)

\BbbE \| \nabla F (\=x(K))\| 2 \leq 2(1 - \beta )[F (\bfx (1)) - \mathrm{i}\mathrm{n}\mathrm{f}\bfx F (\bfx )]
\alpha (

\surd 
a+K - 

\surd 
a)

+
\Bigl[ 
\rho 2\alpha (1+2a)\tau 
(1 - \beta )a

\surd 
a

+ (1+5\rho )\beta 2

2(1 - \beta 2)
(1 + ln a+K - 2

a ) + \rho (1 + ln a+K - 1
a )

\Bigr] 
\cdot 2\alpha \sigma 2

(1 - \beta )(
\surd 
a+K - 

\surd 
a)
.

Remark 5.8. Note that the logarithmic terms in (5.27) dominate the \tau -related term if

\tau \leq 
\surd 
a - 1
\alpha \rho , which matches the condition in (5.26). When there is no delay, i.e., \tau = 0, a

convergence rate of \widetilde \Theta ( 1\surd 
K
) can be achieved with a = 1; when there is a delay, i.e., \tau > 0,

(5.27) with a = \Theta (\tau 2) gives a rate of \widetilde \Theta ( 1\surd 
K+\tau 2 - 

\surd 
\tau 2
) = \widetilde \Theta ( 1\surd 

K
(
\sqrt{} 
1 + \tau 2

K +
\sqrt{} 

\tau 2

K )). In this case,

the delay will have a negligible effect on the convergence speed if \tau = o(
\surd 
K).
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6. Numerical experiments. In this section, we test Algorithm 1 by numerical experi-
ments on three examples: the phase retrieval problem, neural network training, and sparse
bilinear logistic regression (BLR). For each example, we test the effect of the inertial force
with different \beta k. Also, we demonstrate the advantage of the asynchronous implementation
over the synchronous version (i.e., \tau k = 0 \forall k) of Algorithm 1. In all the tests, we compare
the performance of Algorithm 1 with different settings of \{ \alpha k\} and \{ \beta k\} , which are fixed to
constants for all iterations k or decrease with respect to the number of epochs.

6.1. Phase retrieval problem. The phase retrieval problem aims to recover a signal x\ast \in 
\BbbR d from m measuring vectors1 \{ ai\} mi=1 and the correspondingly obtained magnitudes

\bigl\{ 
bi
\bigr\} m
i=1

.
It can be formulated into the nonsmooth minimization problem [12, 16, 17]

(6.1) min
\bfx \in \BbbR d

1

m

m\sum 
i=1

\bigm| \bigm| | \langle ai,x\rangle | 2  - b2i
\bigm| \bigm| ,

which is in the form of (1.1) with F (x) = 1
m

\sum m
i=1

\bigm| \bigm| | \langle ai,x\rangle | 2  - b2i
\bigm| \bigm| and r(x) \equiv 0. In the test,

the vector ai followed the standard multivariate Gaussian distribution, i.e., ai \sim \scrN (0, I), and
we let bi = | \langle ai,x\ast \rangle | \forall i for a ground truth x\ast . Hence, the optimal objective value is zero.

Synthetic data. We first solved (6.1) with x\ast generated from a uniform distribution
on the d-dimensional unit sphere. Figure 2 shows the results for m =50,000 and d =20,000.
We tested the algorithm for several pairs of (m, d) and observed similar results. In the test,
we computed a stochastic subgradient by using 100 data points, i.e., the minibatch size was
set to 100. The parameters followed either a constant scheme with \alpha k = \alpha , \beta k = \beta \forall k
where \alpha = 5 \times 10 - 5 and \beta \in \{ 0, 0.2, 0.5, 0.8, 0.9\} , or diminished with \alpha k = 5\times 10 - 5

\surd 
ek+1

and

\beta k = min
\bigl\{ 
0.9, 2

(ek+1)1/4

\bigr\} 
\forall k or \beta k = 0 \forall k. Here, ek denotes the epoch number at the kth

iteration. During the test, we also experimented with different values of the constant \alpha . We
found that for a smaller \alpha , the algorithm converged more slowly but could reach a lower
objective value. The choice \alpha = 5\times 10 - 5 resulted in a good trade-off between the convergence
speed and the final objective value.

From the left subfigure in Figure 2, we see that the algorithm with a bigger \beta converged
faster but achieved a higher objective value. The convergence of the algorithm with a di-
minishing \{ \alpha k\} and constant \beta k = 0 is the slowest. The best results were obtained by the
choice of diminishing \{ \alpha k\} and \{ \beta k\} . Comparing the curve with diminishing \{ \alpha k\} and \{ \beta k\} to
that with \beta k = 0.9 \forall k, we notice that the two curves are almost the same within the first five
epochs, i.e., before the latter one becomes flat. However, the former can decrease the objective
to a significantly smaller value. Thus both the choices of \{ \alpha k\} and \{ \beta k\} contribute to the best
results. With the diminishing \{ \alpha k\} and \{ \beta k\} that yield the best results for the nonparallel
case, we then compared the sync-parallel and async-parallel implementations of Algorithm 1.
The middle subfigure in Figure 2 shows the results for the async-parallel version with different
numbers of workers. The right subfigure shows the running time of both versions. The results
show that the convergence speed (in terms of epoch number) of the async-parallel method is
almost never affected by the asynchrony (or information delay). In addition, we see that the

1In general, the signal \bfx and the measuring vectors \{ \bfa i\} can be complex-valued. For simplicity, we focus
on the real field.
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Figure 2. Results by Algorithm 1 on solving instances of the phase retrieval problem (6.1) with randomly
generated \bfx \ast , m = 50,000 and d = 20,000. Left: nonparallel implementation of Algorithm 1 with different
choices of \{ \alpha k\} and \{ \beta k\} ; middle: async-parallel implementation of Algorithm 1 with diminishing \{ \alpha k\} and
\{ \beta k\} , and with different numbers of workers; right: running time (in seconds) of the sync-parallel and async-
parallel implementation of Algorithm 1 with different numbers of workers.

Figure 3. Ground-truth images. Left: a CT scan image. Right: the cameraman image.

async-parallel implementation yielded significantly higher parallelization speed-up over the
sync-parallel one, according to the right subfigure in Figure 2.

Image data. We also solved (6.1) with x\ast flattened from an image. We tested with two
images: a CT scan image2 of size 94 \times 138 after downsampling and the cameraman image3

of size 196 \times 196 after cropping. Figure 3 shows the ground-truth images, Figures 4 and 6
show convergence curves and computing times, and Figures 5 and 7 show recovered images.
In the test, for the CT scan image, d = 12,972, and we selected m = 40,000, computed each
stochastic subgradient by using 100 randomly sampled data points, and set \alpha k = 10 - 4

\surd 
ek+1

; for

the cameraman image, d = 38,416, and we selected m = 60,000, computed each stochastic
subgradient by using 60 randomly sampled data points, and set \alpha k = 5\times 10 - 5

\surd 
ek+1

. We first tested

the nonparallel version of Algorithm 1 with \beta k = \beta \forall k, where \beta \in \{ 0, 0.2, 0.5, 0.8, 0.9\} , and
then tested the parallel version by different numbers of workers.

From the left subfigures in Figures 4 and 6, we see that the algorithm with a bigger \beta 
converged faster. After 400 epochs, the algorithm achieved the lowest objective value and the

2https://aimi.stanford.edu/radiopaedia-list-ai-imaging-datasets.
3https://github.com/antimatter15/cameraman.
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Figure 4. Results by Algorithm 1 on solving instances of the phase retrieval problem (6.1) with a CT scan
image as \bfx \ast and m = 40,000. Left: nonparallel implementation of Algorithm 1 with diminishing \{ \alpha k\} and
different choices of \{ \beta k\} ; middle: async-parallel implementation of Algorithm 1 with diminishing \{ \alpha k\} and
\beta k = 0.8, and with different numbers of workers; right: running time (in seconds) of the sync-parallel and
async-parallel implementation of Algorithm 1 with different numbers of workers.
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Figure 5. Recovered images by Algorithm 1 on solving instances of the phase retrieval problem (6.1) with a
CT scan image as \bfx \ast and m = 40,000. Top: nonparallel implementation of Algorithm 1 with diminishing \{ \alpha k\} 
and different choices of \{ \beta k\} ; bottom: async-parallel implementation of Algorithm 1 with diminishing \{ \alpha k\} and
\beta k = 0.8, and with different numbers of workers.

smallest distance from x\ast with \beta k = 0.8 \forall k for the CT scan image, and with \beta k = 0.9 \forall k for
the cameraman image. Algorithm 1 recovered the image clearly for the CT scan image with
\beta k \equiv \beta \in \{ 0.9, 0.8, 0.5\} shown in the top subfigures in Figure 5 and for the cameraman image
with \beta k = 0.9\forall k in the top subfigures in Figure 7. The recovered images became clearer as
the \beta value increases. The middle subfigures in Figures 4 and 6 show the results for the async-
parallel version of Algorithm 1 with different numbers of workers, and the bottom subfigures
in Figures 5 and 7 show the corresponding recovered images. The right subfigures in Figures 4
and 6 show the running time of both sync-parallel and async-parallel versions of Algorithm 1.
The results show that the convergence speed (in terms of epoch number) of the async-parallel
method is rarely affected by the asynchrony (or information delay). In addition, we see that
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Figure 6. Results by Algorithm 1 on solving instances of the phase retrieval problem (6.1) with the crame-
man image as \bfx \ast and m = 60,000. Left: nonparallel implementation of Algorithm 1 with diminishing \{ \alpha k\} 
and different choices of \{ \beta k\} ; middle: async-parallel implementation of Algorithm 1 with diminishing \{ \alpha k\} 
and \beta k = 0.9, and with different numbers of workers; right: running time (in seconds) of the sync-parallel and
async-parallel implementation of Algorithm 1 with different numbers of workers.
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Figure 7. Recovered images by Algorithm 1 on solving instances of the phase retrieval problem (6.1) with
the crameman image as \bfx \ast and m = 60,000. Top: nonparallel implementation of Algorithm 1 with diminishing
\{ \alpha k\} and different choices of \{ \beta k\} ; bottom: async-parallel implementation of Algorithm 1 with diminishing
\{ \alpha k\} and \beta k = 0.9, and with different numbers of workers.

the async-parallel implementation yielded significantly higher parallelization speed-up over
the sync-parallel one.

6.2. Neural network models training. In this subsection, we trained two neural network
models by Algorithm 1. One is LeNet5 on the MNIST dataset [26] and the other is AllCNN [55]
on the Cifar10 dataset [25]. LeNet5 has two convolutional, two max-pooling, and three fully
connected layers. AllCNN has nine convolutional and one avg-pooling layers. The outputs of
the two models are rescaled as probabilities in all classes for each data sample by the softmax
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Figure 8. Results by Algorithm 1 on training LeNet5 on the MNIST dataset. First column: nonparallel
implementation of Algorithm 1 with \alpha k = 0.001 \forall k and different choices of \{ \beta k\} ; second column: async-parallel
implementation of Algorithm 1 with \alpha k = 0.001 and \beta k = 0.9 \forall k; third column: async-parallel implementation
of Algorithm 1 with \alpha k = 0.001 and \beta k = min

\bigl\{ 
0.9, 2

(ek+1)1/4

\bigr\} 
\forall k; fourth column: running time (in seconds)

of the sync-parallel and async-parallel implementations of Algorithm 1 with different numbers of workers.

function. The estimated probabilities and the true class labels are fed to the negative log
likelihood loss function to get the losses. The objective is to minimize the mean loss over
all data samples, which is in the form of (1.1) with the model weights as x, the mean loss
as F (x) and r(x) \equiv 0. For both trainings, we set \alpha k = \alpha \forall k and selected the best \alpha from
\{ 0.01, 0.005, 0.001, 0.0005, 0.0001\} . For training LeNet5, we used \alpha k = 0.001, and for training
Cifar10, we used \alpha k = 0.005 \forall k.

The results of training LeNet5 on the MNIST dataset are shown in Figure 8. In the test,
we computed a stochastic subgradient by using 40 data samples, i.e., the minibatch size was
set to 40. We first tested Algorithm 1 with \beta k = \beta \forall k, where \beta \in \{ 0, 0.2, 0.5, 0.8, 0.9\} , or \beta k =
min

\bigl\{ 
0.9, 2

(ek+1)1/4

\bigr\} 
\forall k. The first column of Figure 8 shows that the algorithm with a bigger

\beta gave better results. Notice that the algorithm with \beta k = 0.9 or \beta k = min
\bigl\{ 
0.9, 2

(ek+1)1/4

\bigr\} 
\forall k

give the highest testing accuracy. For these two choices, we ran the async-parallel version
of Algorithm 1 with different numbers of workers. From the results in the second and third
columns of Figure 8, we see that the asynchrony had negative effect on the behavior of the
algorithm, especially when more workers were used. Nevertheless, the final training loss for
all different number of workers is almost the same, and the final testing accuracy by using
10 or 20 workers is slightly lower than that produced by using fewer workers. The fourth
column compares the running time of the sync-parallel and async-parallel implementations
of Algorithm 1 with \beta k = min

\bigl\{ 
0.9, 2

(ek+1)1/4

\bigr\} 
\forall k. Again, the bars show significantly higher

parallelization speed-up by the async-parallel implementation over the sync-parallel one.
The results of training AllCNN on the Cifar10 dataset are shown in Figure 9. In the test,

we set the minibatch size to 100 and \beta k = \beta \forall k, where \beta \in \{ 0, 0.2, 0.5, 0.8, 0.9\} . The left
column of Figure 9 shows that the algorithm with a bigger \beta gave better results. The choice
of \beta k = 0.9 \forall k yielded the best results. With this choice, we compared the sync-parallel and
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Figure 9. Results by Algorithm 1 on training AllCNN on the Cifar10 dataset. Left: nonparallel implemen-
tation of Algorithm 1 with \alpha k = 0.005 and different \{ \beta k\} ; middle: async-parallel implementation of Algorithm 1
with \alpha k = 0.005, \beta k = 0.9, and with different numbers of workers; right: running time (in seconds) of the sync-
parallel and async-parallel implementations of Algorithm 1 with different numbers of workers.

async-parallel implementations of Algorithm 1. The middle column in Figure 9 shows the
results for the async-parallel version with different numbers of workers. The right column
shows the running time of both versions. From the results, we see that the convergence
speed (in terms of epoch number) of the async-parallel method is almost not affected by the
asynchrony. In addition, we see again that the async-parallel implementation yielded higher
parallelization speed-up over the sync-parallel one.

6.3. Sparse bilinear logistic regression. In this subsection, we test Algorithm 1 on solving
the sparse BLR built in [54]. Let \{ (Xi, yi)\} mi=1 be the training dataset with each data sample
Xi \in \BbbR s\times t and label yi \in \{ 1, 2, . . . , C\} for i = 1, 2, . . . ,m, where C is the number of classes.
The sparse BLR is modeled as

(6.2) min
\scrU ,\scrV ,\bfb 

 - 1

m

m\sum 
i=1

log

\Biggl( 
exp[tr(UyiXiVyi) + byi ]\sum C
j=1 exp[tr(UjXiVj) + bj ]

\Biggr) 
+ \lambda (\| \scrU \| 1 + \| \scrV \| 1 + \| b\| 1),

where \scrU = (U1, U2, . . . , UC),\scrV = (V1, V2, . . . , VC),b = (b1, b2, . . . , bC) with Uj \in \BbbR p\times s, Vj \in 
\BbbR t\times p, bj \in \BbbR for j = 1, 2, . . . , C, \| \scrU \| 1 :=

\sum C
j=1

\sum p
i=1

\sum s
l=1 | (Uj)i,l| , \lambda \geq 0 is the weight for

the sparse regularizer, and tr(S) :=
\sum p

i=1 Si,i for any matrix S \in \BbbR p\times p. To solve (6.2),
we apply Algorithm 1 with x = (\scrU ,\scrV ,b), F (x) being the first term in (6.2), and r(x) =
\lambda (\| \scrU \| 1 + \| \scrV \| 1 + \| b\| 1).

In this test, we used the MNIST dataset [26] and set the minibatch to 100 while comput-
ing a stochastic gradient of F . To obtain a relatively high accuracy and also relatively cheap
computation, we chose p = 5 and \lambda = 10 - 3. The learning rate was set to \alpha k = \alpha \forall k with \alpha 
tuned from \{ 0.01, 0.005, 0.001, 0.0005, 0.0001\} . To ensure convergence and also satisfactory fi-
nal testing accuracy for both async-parallel and sync-parallel implementations of Algorithm 1,
we set \alpha = 0.0005. Note that the sync-parallel version could converge faster in the beginning
with a larger \alpha but the final testing accuracy and training loss were similar to those produced
by using \alpha = 0.0005.
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Figure 10. Results by Algorithm 1 to solve the sparse BLR (6.2) on the MNIST dataset with p = 5 and
\lambda = 0.001. Left: nonparallel implementation of Algorithm 1 with \alpha k = 0.0005 and different \{ \beta k\} ; middle:
async-parallel implementation of Algorithm 1 with \alpha k = 0.0005, \beta k = 0.9 \forall k, and with different numbers of
workers; right: running time (in seconds) of the sync-parallel and async-parallel implementations of Algorithm 1
with different numbers of workers.

The left column of Figure 10 shows the results by Algorithm 1 with \beta k = \beta \in \{ 0, 0.2, 0.5,
0.8, 0.9\} \forall k. We see that the algorithm with a bigger \beta converges faster. The middle column
in Figure 10 shows the results by the async-parallel implementation of Algorithm 1 with
\beta k = 0.9,\forall k and with different numbers of workers. The right column shows the running
time of both sync-parallel and async-parallel implementations. The results show that the
convergence speed (in terms of epoch number) of the async-parallel method is almost not
affected by the asynchrony. In addition, we see that the async-parallel implementation yielded
significantly higher parallelization speed-up over the sync-parallel one.

7. Conclusions. We have proposed an inertial-accelerated proximal stochastic subgradient
method for solving nonconvex stochastic optimization. An O(1/K

1
2 ) convergence rate result

is established for three different problem classes, by the measure of the expected value of the
gradient norm square of the objective function or its Moreau envelope, where K is the number
of total iterations. The same-order convergence rate can be shown even if the derivative
information is outdated in an asynchronous distributed computing environment, provided
that the delay (or staleness) of the derivative is in a tolerable range. Numerical experiments
on phase retrieval, neural network training, and sparse BLR demonstrate faster convergence
by using the inertial-acceleration technique and also the higher parallelization speed-up of the
asynchronous computing over the synchronous counterpart.

Appendix A. Remaining proofs. In this section, we provide proofs of the lemmas that
are used in our analysis.

Proof of Lemma 3.3. For ease of notation, we denote \delta = 1 - \alpha k\rho in this proof. We have

\| x(k+1)  - \widetilde x(k)\| 2

=
\bigm\| \bigm\| prox\alpha kr

\bigl( 
x(k)  - \alpha kg

(k) + \beta k(x
(k)  - x(k - 1))

\bigr) 
 - prox\alpha kr

\bigl( 
\alpha k\rho x

(k) - \alpha k\widetilde v(k)+(1 - \alpha k\rho )\widetilde x(k)
\bigr) \bigm\| \bigm\| 2
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\leq 
\bigm\| \bigm\| \delta (x(k)  - \widetilde x(k)) - \alpha k(g

(k)  - \widetilde v(k)) + \beta k(x
(k)  - x(k - 1))

\bigm\| \bigm\| 2
=
\bigm\| \bigm\| \delta (x(k)  - \widetilde x(k)) + \beta k(x

(k)  - x(k - 1))
\bigm\| \bigm\| 2 + \alpha 2

k

\bigm\| \bigm\| g(k)  - \widetilde v(k)
\bigm\| \bigm\| 2(A.1)

 - 2\alpha k

\bigl\langle 
\delta (x(k)  - \widetilde x(k)) + \beta k(x

(k)  - x(k - 1)),g(k)  - \widetilde v(k)
\bigr\rangle 
,

(A.2)

where the first equality is from (1.2) and (3.3), and the inequality follows from the nonexpan-
siveness of the proximal mapping. Taking conditional expectation on \xi k over the equation in
(A.2) gives

\BbbE \xi k\| x(k+1)  - \widetilde x(k)\| 2

\leq 
\bigm\| \bigm\| \delta (x(k)  - \widetilde x(k)) + \beta k(x

(k)  - x(k - 1))
\bigm\| \bigm\| 2 + \alpha 2

k\BbbE \xi k

\bigm\| \bigm\| g(k)  - \widetilde v(k)
\bigm\| \bigm\| 2

 - 2\alpha k

\bigl\langle 
\delta (x(k)  - \widetilde x(k)) + \beta k(x

(k)  - x(k - 1)),v(k)  - \widetilde v(k)
\bigr\rangle 

\leq 
\bigl( 
\delta \| x(k)  - \widetilde x(k)\| + \beta k\| x(k)  - x(k - 1)\| 

\bigr) 2
+ 4\alpha 2

kM
2

 - 2\alpha k\delta 
\bigl\langle 
x(k)  - \widetilde x(k),v(k)  - \widetilde v(k)

\bigr\rangle 
 - 2\alpha k\beta k

\bigl\langle 
x(k)  - x(k - 1),v(k)  - \widetilde v(k)

\bigr\rangle 
\leq \delta 2(1 + ck)\| x(k)  - \widetilde x(k)\| 2 + (1 + 1

ck
)\beta 2

k\| x(k)  - x(k - 1)\| 2 + 4\alpha 2
kM

2

 - 2\alpha k\delta 
\bigl\langle 
x(k)  - \widetilde x(k),v(k)  - \widetilde v(k)

\bigr\rangle 
+ \beta 2

k\| x(k)  - x(k - 1)\| 2 + \alpha 2
k\| v(k)  - \widetilde v(k)\| 2,

where the second inequality holds by (3.2), and the third inequality follows from the Young's
inequality along with a scalar ck > 0. Now we obtain the desired result by plugging (3.4) into
the above inequality, bounding \| v(k)  - \widetilde v(k)\| 2 \leq 4M2, and noticing

\delta 2(1 + ck) + 2\alpha k\delta \rho = 1 - 2\alpha k(\rho  - \rho ) - \alpha 2
k\rho (2\rho  - \rho ) + ck\delta 

2 \leq 1 - 2\alpha k(\rho  - \rho ) + ck,

where the equality holds because \delta = 1 - \alpha k\rho , and the inequality follows from \delta < 1, ck > 0,
and \rho \leq 2\rho .

Proof of Lemma 3.7. Taking conditional expectation on \tau k, we have \BbbE \tau k [F (x(k - \tau k))] =\sum \tau 
j=0 pjF (x(k - j)), where we let x(k) = x(1) \forall k \leq 0. Hence,\sum K
k=1 \BbbE 

\bigl[ 
F (x(k - \tau k))

\bigr] 
=
\sum K

k=1

\sum \tau 
j=0 pj\BbbE 

\bigl[ 
F (x(k - j))

\bigr] 
=
\sum K

k=1

\sum k
t=k - \tau pk - t\BbbE 

\bigl[ 
F (x(t))

\bigr] 
=
\sum K

t=1 - \tau 

\sum \mathrm{m}\mathrm{i}\mathrm{n}\{ K,t+\tau \} 
k=\mathrm{m}\mathrm{a}\mathrm{x}\{ 1,t\} pk - t\BbbE 

\bigl[ 
F (x(t))

\bigr] 
and

K\sum 
k=1

\BbbE 
\bigl[ 
F (x(k)) - F (x(k - \tau k))

\bigr] 
=

K\sum 
k=1

\BbbE 
\bigl[ 
F (x(k))

\bigr] 
 - 

K\sum 
k=1 - \tau 

min\{ K,k+\tau \} \sum 
t=max\{ 1,k\} 

pt - k\BbbE 
\bigl[ 
F (x(k))

\bigr] 
=

\Biggl( 
1 - 

1\sum 
k=1 - \tau 

k+\tau \sum 
t=1

pt - k

\Biggr) 
F (x(1))+

K\sum 
k=K - \tau +1

\Biggl( 
1 - 

K\sum 
t=k

pt - k

\Biggr) 
\BbbE 
\bigl[ 
F (x(k))

\bigr] 
\leq \tau max

\bigl\{ 
0, - F (x(1))

\bigr\} 
+ \tau CF .(A.3)
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In addition, because \tau k \leq \tau \forall k, it holds\sum K
k=1 \| x(k - \tau k) - x(k)\| 2 \leq \tau 2

\sum K
k=1 \| x(k - 1) - x(k)\| 2,

which together with (3.19) gives\sum K
k=1 \| x(k - \tau k)  - x(k)\| 2 \leq \tau 2

\Bigl( 
\alpha 

\gamma 
\surd 
K

\bigl( 
\phi (x(1)) - \phi \ast \bigr) + \alpha 2M2

\gamma 2

\Bigr) 
.(A.4)

For the last term in \scrE k, we use (3.2) and Assumption 4 to bound it as

 - 
\bigl\langle 
x(k)  - x(k - \tau k),v(k)

\bigr\rangle 
\leq M\| x(k)  - x(k - \tau k)\| \leq M

\sum \tau 
j=1 \| x(k+1 - j)  - x(k - j)\| ,

and thus \sum K
k=1 - 

\bigl\langle 
x(k)  - x(k - \tau k),v(k)

\bigr\rangle 
\leq M\tau 

\sum K
k=1 \| x(k)  - x(k - 1)\| .(A.5)

By the Cauchy--Schwarz inequality and Jensen's inequality, we have\sum K
k=1 \BbbE \| x(k)  - x(k - 1)\| \leq 

\surd 
K
\sqrt{} \sum K

k=1

\bigl( 
\BbbE \| x(k) - x(k - 1)\| 

\bigr) 2 \leq \surd 
K
\sqrt{} \sum K

k=1 \BbbE \| x(k)  - x(k - 1)\| 2,

which together with (3.19) and (A.5) gives

(A.6)
\sum K

k=1 \BbbE 
\bigl[ 
 - 
\bigl\langle 
x(k)  - x(k - \tau k),v(k)

\bigr\rangle \bigr] 
\leq M\tau 

\surd 
K
\sqrt{} 

\alpha 
\gamma 
\surd 
K

\bigl( 
\phi (x(1)) - \phi \ast 

\bigr) 
+ \alpha 2M2

\gamma 2 .

Now we obtain the desired result from (A.3), (A.4), and (A.6).

Proof of Lemma 3.11. When condition 2 of Assumption 5 holds, the update in (1.2) indi-
cates that there exists a subgradient \~\nabla r2(x

(k+1)) such that\bigl\langle 
y  - x(k+1), \alpha k

\~\nabla r2(x
(k+1)) + x(k+1)  - x(k) + \alpha kg

(k)  - \beta k(x
(k)  - x(k - 1))

\bigr\rangle 
\geq 0 \forall y \in X.

Letting y = x(k) and rearranging terms in the above inequality, we have

(A.7) \| x(k+1)  - x(k)\| 2 \leq 
\bigl\langle 
x(k)  - x(k+1), \alpha k( \~\nabla r2(x

(k+1)) + g(k)) - \beta k(x
(k)  - x(k - 1))

\bigr\rangle 
,

which together with the Cauchy--Schwarz inequality gives

\| x(k+1)  - x(k)\| \leq \| \alpha k( \~\nabla r2(x
(k+1)) + g(k)) - \beta k(x

(k)  - x(k - 1))\| .

Hence, by the triangle inequality and the Young's inequality, we have for any c > 0,

\| x(k+1)  - x(k)\| 2 \leq (\alpha k\| \~\nabla r2(x
(k+1)) + g(k)\| + \beta k\| x(k)  - x(k - 1)\| )2

\leq \alpha 2
k(1 +

1
c )\| \~\nabla r2(x

(k+1)) + g(k)\| 2 + \beta 2
k(1 + c)\| x(k)  - x(k - 1)\| 2

\leq 2\alpha 2
k(1 +

1
c )(\| \~\nabla r2(x

(k+1))\| 2 + \| g(k)\| 2) + \beta 2
k(1 + c)\| x(k)  - x(k - 1)\| 2.

Take full expectation on both sides of the above inequality and use Assumption 3 and condi-
tion 2 of Assumption 5 to obtain

\BbbE \| x(k+1)  - x(k)\| 2 \leq 2\alpha 2
k(1 +

1
c )
\bigl( 
M2

r +M2
\bigr) 
+ \beta 2

k(1 + c)\BbbE \| x(k)  - x(k - 1)\| 2.

Let c = 1
2(1/

\~\beta 2  - 1) and sum up the above inequality over k = 1 to K. We obtain (3.24) by

rearranging terms and using x(0) = x(1).



DISTRIBUTED DELAYED STOCHASTIC INERTIAL METHODS 583

Proof of Lemma 3.12. By similar arguments as in the proof to obtain (A.3), we have

K\sum 
k=k0

\alpha k\BbbE 
\bigl[ 
F (x(k)) - F (x(k - \tau k))

\bigr] 
=

K\sum 
k=k0

\alpha k\BbbE 
\bigl[ 
F (x(k)) - CF

\bigr] 
 - 

K\sum 
k=k0 - \tau 

min\{ K,k+\tau \} \sum 
t=max\{ k0,k\} 

\alpha tpt - k\BbbE 
\bigl[ 
F (x(k)) - CF

\bigr] 

=  - 
k0 - 1\sum 

k=k0 - \tau 

min\{ K,k+\tau \} \sum 
t=max\{ k0,k\} 

\alpha tpt - k\BbbE 
\bigl[ 
F (x(k)) - CF

\bigr] 
+

K\sum 
k=k0

\left(  \alpha k  - 
min\{ K,k+\tau \} \sum 
t=max\{ k0,k\} 

\alpha tpt - k

\right)  \BbbE 
\bigl[ 
F (x(k)) - CF

\bigr] 
\leq 2\alpha k0

\tau CF ,

(A.8)

where the inequality holds by the nonincreasing monotonicity of \{ \alpha k\} and the fact | F (x(k))| \leq 
CF \forall k.

In addition, from the nonincreasing monotonicity of \{ \alpha k\} and \tau k \leq \tau \forall k, it holds that\sum K
k=k0

\alpha k\| x(k - \tau k)  - x(k)\| 2 \leq \alpha k0\tau 
2
\sum K

k=k0 - \tau +1 \| x(k - 1) - x(k)\| 2 \leq \alpha k0
\tau 2
\sum K

k=2 \| x(k - 1)  - x(k)\| 2.

Hence, by (3.22) and (3.24), and the definitions of C1 and C2 in (3.27), we have from the
above that

(A.9)
\sum K

k=k0
\alpha k\| x(k - \tau k)  - x(k)\| 2 \leq \alpha k0\tau 

2
\bigl( 
C1 + C2

\sum K
k=1 \alpha 

2
k

\bigr) 
.

Finally, similar to (A.5), we have\sum K
k=k0

\bigl[ 
 - \alpha k

\bigl\langle 
x(k)  - x(k - \tau k),v(k)

\bigr\rangle \bigr] 
\leq M\tau 

\sum K
k=k0

\alpha k\| x(k)  - x(k - 1)\| .(A.10)

By the Cauchy--Schwarz inequality and Jensen's inequality, it holds that

K\sum 
k=k0

\alpha k\BbbE 
\bigl[ 
\| x(k)  - x(k - 1)\| 

\bigr] 
\leq 

\sqrt{}    K\sum 
k=k0

\alpha 2
k

\sqrt{}    K\sum 
k=k0

\BbbE 
\bigl[ 
\| x(k)  - x(k - 1)\| 2

\bigr] 
\leq 

\sqrt{}    K\sum 
k=k0

\alpha 2
k

\sqrt{}    C1 + C2

K\sum 
k=1

\alpha 2
k,

which together with (A.10) gives\sum K
k=k0

\BbbE 
\bigl[ 
 - \alpha k

\bigl\langle 
x(k)  - x(k - \tau k),v(k)

\bigr\rangle \bigr] 
\leq M\tau 

\sqrt{} \sum K
k=k0

\alpha 2
k

\sqrt{} 
C1 + C2

\sum K
k=1 \alpha 

2
k.(A.11)

Now (3.25) follows from (A.8), (A.9), and (A.11), and also 1  - \alpha k\rho \leq 1 and
\sum K

k=1 \alpha 
2
k \leq 

\alpha 2(1 + lnK).

Proof of Lemma 4.2. As in the proof of Lemma 3.3, we denote \delta = 1  - \alpha k\rho and take
conditional expectation about \xi k over both sides of (A.1) to have

\BbbE \xi k\| x(k+1)  - \widetilde x(k)\| 2
(A.12)

\leq \BbbE \xi k

\bigm\| \bigm\| \delta (x(k)  - \widetilde x(k)) - \alpha k(g
(k)  - \widetilde v(k)) + \beta k(x

(k)  - x(k - 1))
\bigm\| \bigm\| 2

= \BbbE \xi k

\bigm\| \bigm\| \delta (x(k)  - \widetilde x(k)) - \alpha k(\nabla F (x(k)) - \nabla F (\widetilde x(k))) + \beta k(x
(k)  - x(k - 1)) - \alpha kw

(k)
\bigm\| \bigm\| 2
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=
\bigm\| \bigm\| \delta (x(k)  - \widetilde x(k)) - \alpha k(\nabla F (x(k)) - \nabla F (\widetilde x(k))) + \beta k(x

(k)  - x(k - 1))
\bigm\| \bigm\| 2 + \alpha 2

k\BbbE \xi k\| w(k)\| 2

 - 2\alpha k\BbbE \xi k

\bigl\langle 
\delta (x(k)  - \widetilde x(k)) - \alpha k(\nabla F (x(k)) - \nabla F (\widetilde x(k))) + \beta k(x

(k)  - x(k - 1)),w(k)
\bigr\rangle 

\leq 
\bigl( 
(\delta + \alpha k\rho )\| x(k)  - \widetilde x(k)\| + \beta k\| x(k)  - x(k - 1)\| 

\bigr) 2
+ \alpha 2

k

\bigl( 
\sigma 2 + \rho 2\| x(k - \tau k)  - x(k)\| 2

\bigr) 
+ \scrE ,

where we have used Assumption 6 and Lemma 4.1 to obtain the last inequality, and we denote
w(k) = g(k)  - \nabla F (x(k)) and

\scrE :=  - 2\alpha k

\bigl\langle 
\delta (x(k)  - \widetilde x(k)) - \alpha k(\nabla F (x(k)) - \nabla F (\widetilde x(k))) + \beta k(x

(k) - x(k - 1)),\nabla F (x(k - \tau k)) - \nabla F (x(k))
\bigr\rangle 
.

Now we apply the Young's inequality to bound the first square term in (A.12) to obtain
(A.13)

\BbbE \xi k\| x(k+1)  - \widetilde x(k)\| 2 \leq (1 + ck)(\delta + \alpha k\rho )
2\| x(k)  - \widetilde x(k)\| 2

+ (1 + 1
ck
)\beta 2

k\| x(k)  - x(k - 1)\| 2 + \alpha 2
k\sigma 

2 + \alpha 2
k\rho 

2\| x(k - \tau k)  - x(k)\| 2 + \scrE ,
where ck is any positive number. Recall \delta = 1 - \alpha k\rho , and thus

(1 + ck)(\delta + \alpha k\rho )
2 = (1 + ck) (1 - \alpha k(\rho  - \rho )(2 - \alpha k(\rho  - \rho )))

\leq (1 + ck) (1 - \alpha k(\rho  - \rho )) \leq 1 + ck  - \alpha k(\rho  - \rho ),

where the two inequalities follow from 0 < \alpha k(\rho  - \rho ) < 1 and ck > 0. Hence, (A.13) implies
(A.14)

\BbbE \xi k\| x(k+1)  - \widetilde x(k)\| 2 \leq (1 + ck  - \alpha k(\rho  - \rho )) \| x(k)  - \widetilde x(k)\| 2

+ (1 + 1
ck
)\beta 2

k\| x(k)  - x(k - 1)\| 2 + \alpha 2
k\sigma 

2 + \alpha 2
k\rho 

2\| x(k - \tau k)  - x(k)\| 2 + \scrE .
Below we bound \scrE . We have by the triangle inequality and the \rho -smoothness of F that

\scrE \leq 2\alpha k\rho 
\bigl( 
(\delta + \alpha k\rho )\| x(k)  - \widetilde x(k)\| + \beta k\| x(k)  - x(k - 1)\| 

\bigr) 
\| x(k - \tau k)  - x(k)\| 

\leq 1
2\alpha k(\rho  - \rho )\| x(k)  - \widetilde x(k)\| 2 + 2\alpha k\rho 

2

\rho  - \rho \| x(k - \tau k)  - x(k)\| 2(A.15)

+ \beta 2
k\| x(k)  - x(k - 1)\| 2 + \alpha 2

k\rho 
2\| x(k - \tau k)  - x(k)\| 2,

where we have used \delta + \alpha k\rho = 1 - \alpha k(\rho  - \rho ) < 1 and the Young's inequality twice to obtain
the second inequality. Plug (A.15) into (A.14) and rearrange terms. We obtain (4.1) and
complete the proof.

Lemma A.1. Let \{ x(k)\} k\geq 1 and \{ g(k)\} k\geq 1 be generated from Algorithm 1 for a nonregular-
ized smooth problem, and let \{ qk\} k\geq 1 be a sequence of constants. Under Assumptions 2 and
7, we have

(A.16) \BbbE 
\bigm\| \bigm\| \sum k

j=1 qjg
(j)
\bigm\| \bigm\| 2 \leq \sum k

l=1 ql
\sum k

j=1 qjuj +
\sum k

j=1 q
2
juj + \sigma 2

\sum k
j=1 q

2
j ,

where uj is defined in (5.2).

Proof of Lemma A.1. From Algorithm 1, we have

(A.17)
\sum k

j=1 qjg
(j) =

\sum k
j=1 qj\nabla f(x(j - \tau j); \xi j).

Taking a total expectation and using Assumption 2 results in

(A.18) \BbbE 
\bigl[ \sum k

j=1 qjg
(j)
\bigr] 
=
\sum k

j=1 qj\BbbE [\nabla F (x(j - \tau j))] =
\sum k

j=1 qj\BbbE u(j),
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which further implies that

(A.19)
\bigm\| \bigm\| \BbbE \bigl[ \sum k

j=1 qjg
(j)
\bigr] \bigm\| \bigm\| 2 \leq \sum k

l=1 ql
\sum k

j=1 qj\BbbE \| u(j)\| 2 =\sum k
l=1 ql

\sum k
j=1 qjuj .

In (A.19), the inequality is obtained by using the triangle inequality, the Cauchy--Schwarz
inequality, and then Jensen's inequality. We further bound the variance as follows:

\BbbE 
\bigm\| \bigm\| \sum k

j=1 qjg
(j)  - \BbbE 

\bigl[ \sum k
j=1 qjg

(j)
\bigr] \bigm\| \bigm\| 2 =\BbbE 

\bigm\| \bigm\| \sum k
j=1 qj

\bigl( 
\nabla f(x(j - \tau j); \xi j) - \BbbE u(j)

\bigr) \bigm\| \bigm\| 2
=
\sum k

j=1 q
2
j\BbbE 
\bigm\| \bigm\| \nabla f(x(j - \tau j); \xi j) - \BbbE u(j)

\bigm\| \bigm\| 2
=
\sum k

j=1 q
2
j

\bigl( 
\BbbE \| \nabla f(x(j - \tau j); \xi j) - u(j)\| 2 + \BbbE \| u(j) - \BbbE u(j)\| 2

\bigr) 
\leq \sum k

j=1 q
2
j

\bigl( 
\sigma 2 + uj

\bigr) 
.(A.20)

Here, the second equality is because the expectations are null for all cross terms \BbbE (g(j)  - 
\BbbE g(j))\top (g(j\prime )  - \BbbE g(j\prime )) with j > j\prime , since each \xi j is independent from \{ x(j), . . . ,x(1)\} and \xi j\prime ;
the third equality is because of Assumption 2; the inequality is by Assumption 7 and that the
variance is upper bounded by the second moment. Combine (A.19) and (A.20) gives (A.16).

Proof of Lemma 5.1. By definition (5.3), we obtain the equality in (5.4). Then the first
inequality in (5.4) follows from\sum k - 1

j=1 \pi k,j(t) =
\sum k - 1

j=k - \tau k+1
1 - tk - j

1 - t + 1 - t\tau k
1 - t

\sum k - \tau k
j=1 tk - \tau k - j = \tau k(1 - t) - tk - \tau k (1 - t\tau k )

(1 - t)2
\leq \tau 

1 - t ,

and the second inequality follows from\sum k - 1
j=1 \pi 

2
k,j(t) =

\sum k - 1
j=k - \tau k+1

1 - 2tk - j+t2(k - j)

(1 - t)2
+ (1 - t\tau k )2

(1 - t)2
\sum k - \tau k

j=1 t2(k - \tau k - j)

= \tau k(1 - t2) - 2(1 - t\tau k )(1+t)+(1 - t2\tau k )+(1 - t\tau k )2(1 - t2(k - \tau k))
(1 - t)2(1 - t2)

\leq \tau 
(1 - t)2

.

Proof of Lemma 5.2. From (1.4) and Assumption 2, we havem(k) =
\sum k

j=1 \beta 
k - j(1 - \beta )g(j);

apply Lemma A.1 with the choice of qj = \beta k - j(1  - \beta ) \forall j \in [k] to obtain (5.5) from (A.16).
Meanwhile,

x(k - \tau k)  - x(k) =  - \sum \tau k - 1
l=0

\bigl( 
x(k - l)  - x(k - l - 1)

\bigr) 
=
\sum \tau k - 1

l=0
\alpha k - l - 1

1 - \beta m(k - l - 1)

=
\sum \tau k - 1

l=0 \alpha k - l - 1
\sum k - l - 1

j=1 \beta k - l - j - 1g(j) =
\sum k - 1

j=1 \theta k,jg
(j)

by (1.5) and (5.3). Apply Lemma A.1 with the choice of qj = \theta k,j \forall j \in [k]. We have (5.6)
from (A.16).

Proof of Lemma 5.3. From (5.7), we have that for k \geq 1,

z(k+1)  - z(k) = 1
1 - \beta (x

(k+1)  - x(k)) - \beta 
1 - \beta (x

(k)  - x(k - 1))

=  - 1
(1 - \beta )2

\alpha km
(k) + \beta 

(1 - \beta )2
\alpha k - 1m

(k - 1)

=  - 1
(1 - \beta )2

\alpha k(\beta m
(k - 1) + (1 - \beta )g(k)) + \beta 

(1 - \beta )2
\alpha k - 1m

(k - 1)

= \beta 
(1 - \beta )2

(\alpha k - 1  - \alpha k)m
(k - 1)  - \alpha k

1 - \beta g
(k)

= \beta 
1 - \beta (1 - \alpha k/\alpha k - 1)

\alpha k - 1

1 - \beta m(k - 1)  - \alpha k
1 - \beta g

(k).
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The second equality is by (1.5); the third equality is by (1.4). The above equality together
with (1.5) gives (5.8), and (5.9) trivially holds by the smoothness of F and (5.7).

The inequalities in the lemma below are easy to show.

Lemma A.2. Let a be a positive integer. Then\sum K
k=1

1\surd 
a+k - 1

\geq 
\int a+K
a

1\surd 
x
dx = 2(

\surd 
a+K  - \surd 

a),

\sum K
k=1

1
a+k - 1 \leq 1 +

\int a+K - 1
a

1
xdx = 1 + ln a+K - 1

a .

Proof of Corollary 5.7. With \alpha k = \alpha /
\surd 
a+ k  - 1 \forall k \geq 1, (5.11) holds if and only if

(A.21) \alpha 
2(1 - \beta )

\surd 
a+k - 1

\geq (1 - 
\surd 
a+ k  - 2/

\surd 
a+ k  - 1)2 = 1

((
\surd 
a+k - 2+

\surd 
a+k - 1)

\surd 
a+k - 1)2

.

Notice 1
(
\surd 
a+1+

\surd 
a)2

\leq 1
4a , and thus a

\surd 
a+ 1 \geq 1 - \beta 

2\alpha indicates \alpha \geq 2(1 - \beta )\surd 
a+1(

\surd 
a+1+

\surd 
a)2

, which

further implies the inequality in (A.21) \forall k \geq 2. Moreover, when (5.26) holds, it is not difficult
to verify that the two inequalities in (5.25) are true, so we have (5.12) and thus (5.13) from
Theorem 5.4.

Below we simplify the inequality in (5.13) for the setting of \alpha k. First,\sum K
k=1 \alpha k\alpha 

2
\mathrm{m}\mathrm{a}\mathrm{x}\{ k - \tau k,1\} \leq 

\sum K
k=1

\alpha 3
\surd 
a+k - 1(a+k - 1 - \tau )

\leq \sum K
k=1

2\alpha 3
\surd 
a+k - 1(a+k - 1)

\leq 2\alpha 3
\Bigl( 

1
a
\surd 
a
+
\int a+K - 1
a

1
x
\surd 
x
dx
\Bigr) 
\leq 2\alpha 3(1+2a)

a
\surd 
a

;

second, by Lemma A.2,

K\sum 
k=1

\alpha k =

K\sum 
k=1

\alpha \surd 
a+ k  - 1

\geq 2\alpha (
\surd 
a+K  - \surd 

a), and

K\sum 
k=1

\alpha 2
k =

K\sum 
k=1

\alpha 2

a+ k  - 1
\leq \alpha 2(1 + ln

a+K  - 1

a
).

Substituting the above three inequalities into (5.13) gives (5.27).

Appendix B. Proof of Theorem 4.7. The key of the proof is to bound
\sum 

k \BbbE [\| x(k)  - 
x(k+1)\| 2] while using Theorem 4.3. First, similar to (A.7), we have

(B.1) \| x(k+1)  - x(k)\| 2 \leq 
\bigl\langle 
x(k)  - x(k+1), \alpha k( \~\nabla r(x(k+1)) + g(k)) - \beta k(x

(k)  - x(k - 1))
\bigr\rangle 
,

where \~\nabla r(x(k+1)) is a subgradient of r at x(k+1). By the convexity of r, it holds that

(B.2)
\bigl\langle 
x(k)  - x(k+1), \~\nabla r(x(k+1))

\bigr\rangle 
\leq r(x(k)) - r(x(k+1)).

In addition, from the \rho -smoothness of F and the Young's inequality, we have\bigl\langle 
x(k)  - x(k+1),g(k)

\bigr\rangle 
=
\bigl\langle 
x(k)  - x(k+1),\nabla F (x(k)) + g(k)  - \nabla F (x(k))

\bigr\rangle 
\leq F (x(k)) - F (x(k+1)) + \rho 

2\| x(k)  - x(k+1)\| 2

+
1

4\alpha k
\| x(k)  - x(k+1)\| 2 + \alpha k\| g(k)  - \nabla F (x(k))\| 2(B.3)
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and

(B.4)
\bigl\langle 
x(k)  - x(k+1), - \beta k(x

(k)  - x(k - 1))
\bigr\rangle 
\leq 1

4\| x(k)  - x(k+1)\| 2 + \beta 2
k\| x(k)  - x(k - 1)\| 2.

Plugging (B.2), (B.3), and (B.4) into (B.1) and rearranging terms yield
(B.5)
1
2(1 - \alpha k\rho )\| x(k+1) - x(k)\| 2 \leq \alpha k

\bigl( 
\phi (x(k)) - \phi (x(k+1))

\bigr) 
+\alpha 2

k\| g(k) - \nabla F (x(k))\| 2+\beta 2
k\| x(k) - x(k - 1)\| 2.

Moreover, by Assumptions 7 and 8 and the \rho -smoothness of F , we have

\BbbE 
\bigl[ 
\| g(k)  - \nabla F (x(k))\| 2

\bigr] 
\leq 2\BbbE 

\bigl[ 
\| g(k)  - \nabla F (x(k - \tau k))\| 2

\bigr] 
+ 2\BbbE 

\bigl[ 
\| \nabla F (x(k - \tau k)) - \nabla F (x(k))\| 2

\bigr] 
\leq 2\sigma 2 + 2\rho 2\BbbE 

\bigl[ 
\| x(k - \tau k)  - x(k)\| 2

\bigr] 
(B.6)

\leq 2\sigma 2 + 2\tau \rho 2
\tau \sum 

j=1

\BbbE 
\bigl[ 
\| x(k - j)  - x(k - j+1)\| 2

\bigr] 
.

Now taking full expectation on (B.5), substituting (B.6) there, and summing over k = 1
to K, we obtain by rearranging terms that
(B.7)

K\sum 
k=1

1

2
(1 - \alpha k\rho  - \beta 2

k+1)\BbbE 
\bigl[ 
\| x(k+1)  - x(k)\| 2

\bigr] 
\leq 

K\sum 
k=1

\alpha k\BbbE 
\bigl( 
\phi (x(k)) - \phi (x(k+1))

\bigr) 
+ 2\sigma 2

K\sum 
k=1

\alpha 2
k

+ 2\tau \rho 2
K\sum 
k=1

\alpha 2
k

\tau \sum 
j=1

\BbbE 
\bigl[ 
\| x(k - j)  - x(k - j+1)\| 2

\bigr] 
,

where we have used x(0) = x(1). Since \alpha k is nonincreasing, we have\sum K
k=1 \alpha 

2
k

\sum \tau 
j=1 \BbbE 

\bigl[ 
\| x(k - j)  - x(k - j+1)\| 2

\bigr] 
\leq \tau 

\sum K
k=1 \alpha 

2
k\BbbE 
\bigl[ 
\| x(k)  - x(k - 1)\| 2

\bigr] 
,

which substituted into (B.7) and together with (3.23) gives

(B.8)
\sum K

k=1
1
2(1 - \alpha k\rho  - \beta 2

k+1  - 2\tau 2\rho 2\alpha 2
k+1)\BbbE 

\bigl[ 
\| x(k+1)  - x(k)\| 2

\bigr] 
\leq 2\alpha 1C\phi + 2\sigma 2

\sum K
k=1 \alpha 

2
k.

By the choice of parameters and the definition of \~\gamma in (4.17), we have from (B.8) and
Lemma A.2 that

(B.9)
\sum K

k=1 \BbbE 
\bigl[ 
\| x(k+1)  - x(k)\| 2

\bigr] 
\leq 2

\~\gamma 

\bigl( 
\alpha 1C\phi + \sigma 2\alpha 2(1 + ln a+K - 1

a )
\bigr) 
.

Notice
\bigl( 
2 + 4

\alpha k(\rho  - \rho )

\bigr) 
\beta 2
k \leq 2\~\beta 2 + 4\beta 2

\alpha (\rho  - \rho ) and \alpha 2
k +

\alpha k
\rho  - \rho \leq \alpha 2

a + \alpha \surd 
a(\rho  - \rho )

\forall k \geq 1. Therefore,

\rho 
2

\sum K
k=1

\bigl( 
2 + 4

\alpha k(\rho  - \rho )

\bigr) 
\beta 2
k\BbbE \| x(k)  - x(k - 1)\| 2 + \rho \rho 2

\sum K
k=1

\bigl( 
\alpha 2
k +

\alpha k
\rho  - \rho 

\bigr) 
\BbbE \| x(k - \tau k)  - x(k)\| 2

\leq 
\Bigl( 
\rho 
2

\bigl( 
2\~\beta 2 + 4\beta 2

\alpha (\rho  - \rho )

\bigr) 
+ \tau 2\rho \rho 2

\bigl( 
\alpha 2

a + \alpha \surd 
a(\rho  - \rho )

\bigr) \Bigr) \sum K
k=1 \BbbE \| x(k)  - x(k - 1)\| 2

\leq 
\Bigl( 
\rho 
2

\bigl( 
2\~\beta 2 + 4\beta 2

\alpha (\rho  - \rho )

\bigr) 
+ \tau 2\rho \rho 2

\bigl( 
\alpha 2

a + \alpha \surd 
a(\rho  - \rho )

\bigr) \Bigr) 
2
\~\gamma 

\bigl( 
\alpha 1C\phi + \sigma 2\alpha 2(1 + ln a+K - 1

a )
\bigr) 
.

(B.10)

Now plug (B.10) and the choice of \{ \alpha k\} into (4.2) to obtain the desired result.
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