Contents

clear; close all;
rand('state',2013); randn('state',2013);

Generating data

load CropPlane; % load a cropped Plane image

load LearnedDict; % load previously learned dictionary
[n,K] = size(D); % size of the dictionary

[N1,N2] = size(X); % get image size

n1 = 8; n2 = 8; % patch size

% calculate number of image-size atoms
% see Fig. 4.1 in our paper
nr = floor(N1/n1); nc = floor(N2/n2);
resnr = N1-n1*nr; resnc = N2-n2*nc;
N = nr*nc+sign(resnr)*nc+sign(resnc)*nr+sign(resnr*resnc);

sr = 0.3; % sample percentage
m = round(sr*N1*N2); % number of samples

eta = randn(m,1); % generate noise
xstart = randn(N*K,1); % generate random starting point for yall1

Running random circulant

roM = randn(N1,N2); % generate random kernel
rM = roM+1i*randn(N1,N2);  rV = fft2(rM);
p = randsample(N1*N2,m); % generate random samples

% to normalize sensing operator
rrM = real(rM); riM = imag(rM);
rell = spGetNrm(p,rrM,riM,N1,N2,m);
rell = rell.^0.5;

rNrm = reshape(rell,N1,N2);

% define operator for yall1
[A_rc,D_Oper_rc] = pave_A_full_operator(p,rV,D,rNrm,N1,N2,n1,n2,K);

% get measurements for random circulant
b = X./rNrm;  b = fft2(rV.*(ifft2(b)));  b = b(p);

% specify parameters for yall1
opts = [];    opts.tol = 1e-3;     opts.x0 = xstart;
opts.rho = 0.01*max(abs(b))/max(abs(eta));

b = b+0.01*max(abs(b))/max(abs(eta))*eta; % add noise

% call yall1
theta = yall1(A_rc,b,opts);

% store recovered image
X_rc = D_Oper_rc(theta);

Running optimized circulant

load LearnedKernel; % load optimized kernel done offline
roV = fft2(roM);
oV = sqrt(U).*exp(2*1i*pi*rand(N1,N2)); % generate the optimized kernel
oV = 0.6*oV/norm(oV,'fro') + 0.4*roV/norm(roV,'fro');% plus some randomness

oM = ifft2(oV);

% to normalize sensing operator
orM = real(oM); oiM = imag(oM);
oell = spGetNrm(p,orM,oiM,N1,N2,m);
oell = oell.^0.5;

oNrm = reshape(oell,N1,N2);

% define operator for yall1
[A_oc, D_Oper_oc] = pave_A_full_operator(p,oV,D,oNrm,N1,N2,n1,n2,K);

% get measurements for the optimized circulant
b = X./oNrm;    b = fft2(oV.*(ifft2(b)));     b = b(p);

% speficy parameters for yall1
opts = [];    opts.tol = 1e-3;         opts.x0 = xstart;
opts.rho = 0.01*max(abs(b))/max(abs(eta));

b = b+0.01*max(abs(b))/max(abs(eta))*eta; % add noise

% call yall1
theta = yall1(A_oc,b,opts);

% store recovered image
X_oc = D_Oper_oc(theta);

X_rc = real(X_rc); X_oc = real(X_oc);

Reporting

fprintf('Random Circulant: PSNR = %4.2f\n',measerr(X,X_rc,max(X(:))));
fprintf('Optimized Circulant: PSNR = %4.2f\n',measerr(X,X_oc,max(X(:))));
figure;
imshow(X_rc);
title('Random Circulant','fontsize',12);

figure;
imshow(X_oc);
title('Optimized Circulant','fontsize',12);
Random Circulant: PSNR = 27.36
Optimized Circulant: PSNR = 29.82